
Chen XB, Qi H, Peng SH et al. Tetris: A heuristic static memory management framework for uniform memory multicore

neural network accelerators. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 37(6): 1255–1270 Nov. 2022.

DOI 10.1007/s11390-021-1213-3

Tetris: A Heuristic Static Memory Management Framework for
Uniform Memory Multicore Neural Network Accelerators

Xiao-Bing Chen1,2 (), Student Member, CCF, Hao Qi3 (), Shao-Hui Peng1,2 ()
Yi-Min Zhuang1,2 (), Tian Zhi1,∗ (), Member, CCF, and
Yun-Ji Chen1,2,4 (), Distinguished Member, CCF

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
Beijing 100190, China

2University of Chinese Academy of Sciences, Beijing 100049, China
3School of Computer Science and Technology, University of Science and Technology of China, Hefei 230026, China
4Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031

China

E-mail: chenxiaobing@ict.ac.cn; theqihao@mail.ustc.edu.cn; {pengshaohui18z, zhuangyimin, zhitian, cyj}@ict.ac.cn

Received December 10, 2020; accepted May 31, 2021.

Abstract Uniform memory multicore neural network accelerators (UNNAs) furnish huge computing power to emerging

neural network applications. Meanwhile, with neural network architectures going deeper and wider, the limited memory

capacity has become a constraint to deploy models on UNNA platforms. Therefore how to efficiently manage memory space

and how to reduce workload footprints are urgently significant. In this paper, we propose Tetris: a heuristic static memory

management framework for UNNA platforms. Tetris reconstructs execution flows and synchronization relationships among

cores to analyze each tensor’s liveness interval. Then the memory management problem is converted to a sequence per-

mutation problem. Tetris uses a genetic algorithm to explore the permutation space to optimize the memory management

strategy and reduce memory footprints. We evaluate several typical neural networks and the experimental results demon-

strate that Tetris outperforms the state-of-the-art memory allocation methods, and achieves an average memory reduction

ratio of 91.9% and 87.9% for a quad-core and a 16-core Cambricon-X platform, respectively.

Keywords multicore neural network accelerator, liveness analysis, static memory management, memory reuse, genetic

algorithm

1 Introduction

Deep neural networks (DNNs) perform well in a

spectrum of complex problems. In computer vision,

the model proposed by Microsoft Research [1] surpasses

humans on the ImageNet classification task. In neu-

ral language processing, the state-of-the-art results

by BERT [2] outperform human performance on the

SQuAD v1.1 questions. In computer games, neural net-

works designed by DeepMind [3, 4] achieve superhuman

performance and occupy the top positions of Go’s rank

list.

The remarkable modeling capabilities of DNNs are

inseparable from numerous parameters and tremendous

connections of their architectures. For example, 9-layer

AlexNet [5] which won the 2012 ILSVRC has six mil-

lion parameters, while ResNeXt101 32x48d [6] with bet-

ter image recognition accuracy has over 829 million

Regular Paper

This work is partially supported by the Beijing Natural Science Foundation under Grant No. JQ18013, the National Natural
Science Foundation of China under Grant Nos. 61925208, 61732007, 61732002 and 61906179, the Strategic Priority Research Program
of Chinese Academy of Sciences (CAS) under Grant No. XDB32050200, the Youth Innovation Promotion Association CAS, Beijing
Academy of Artificial Intelligence (BAAI) and Xplore Prize.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2022

http://dx.doi.org/10.1007/s11390-021-1213-3

1256 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

parameters. In the machine translation domain, the

Sparsely-Gated Mixture-of-Experts layer designed by

Google Brain [7] has up to 137 billion parameters.

While neural networks are becoming deeper and

wider explosively, the limited memory capacity becomes

a critical bottleneck to deploy applications. Thus, it

is a deserved research to reduce model footprints and

efficiently manage the memory space. Several types

of research [8–10] focus on efficiently managing memory

on GPU systems by liveness analysis, data recomputa-

tion, and data swapping. But these methods are not

applicable to uniform memory multicore neural net-

work accelerator (UNNA) platforms. DNN workloads

on GPU systems are executed layer by layer through op-

timized high-performance libraries like cuDNN [11] and

cuBLAS [12]. However, UNNAs [13, 14] typically gene-

rate a kernel for a whole network or a sub-network to

eliminate the overhead introduced by launching ker-

nels and achieve inter-layer optimization. This pro-

gramming paradigm introduces difficulties to existing

memory management strategies. Since the kernel is

uninterruptable, the intermediate data inside a fused

graph cannot be spilled from the UNNA memory to

host devices [8–10]. In addition, layer-wise liveness ana-

lysis like [9] may miss some potential memory reuse

opportunities, because an operation might be split into

sub-operations [15] and executed on different cores with-

out a wall clock. It is pretty challenging to manage

memory efficiently and reduce footprints of DNNs on

UNNA platforms.

In this paper, we propose Tetris, a heuristic memory

management framework for UNNA platforms. Tetris

enables deploying large-scale neural networks by the

exquisite memory reuse strategy and frees programmers

from the arduous memory management work. Tetris is

composed of two parts: the front-end and the back-end.

The front-end takes instructions generated by UNNA

compiler stacks as input, analyzes tensor liveness inter-

vals, and generates a sign matrix to record whether two

tensors can share the same physical memory space. The

back-end takes the sign matrix as input, and leverages

a heuristic method to find an optimized memory allo-

cation configuration. Then the back-end calculates the

total memory footprint and allocates a uniform memory

pool with the minimal size. Finally, for each tensor, the

back-end returns an offset to the memory pool as its ad-

dress. We evaluate Tetris on a quad-core and a 16-core

Cambricon platform with multicore configurations, and

the results show that Tetris achieves remarkable mem-

ory reduction ratios.

The contributions of this work are as follows.

• We develop a framework called Tetris for UNNA

platforms to reduce neural network memory footprints.

Tetris extracts fine-grained tensor liveness intervals,

constructs reusable relationships, and searches for the

optimal memory allocation strategy heuristically.

• We propose a static analysis method to realize

the fine-grained liveness analysis for multicore systems.

This method extracts each core’s basic execution pat-

terns and inter-core synchronization relationships, rep-

resents relative liveness intervals in a graph, and gene-

rates a conflict matrix to indicate whether any two ten-

sors could reuse the same memory space.

• We convert the memory allocation problem into

a black-box optimization problem. We propose a cus-

tomized genetic algorithm based heuristic approach to

search for a pretty efficient memory allocation strategy

with minimal memory footprints.

• We conduct some experiments in several typical

neural networks. The results demonstrate that Tetris

achieves an average memory reduction ratio of 91.9%

and 87.9% on UNNA platforms, much higher than

56.6% and 50.7% of TensorFlow, with quad-core and

16-core configurations, respectively.

2 Background and Motivation

In this section, we first overview the execution

paradigm of DNNs on UNNA platforms. Then we

present related memory management researches, and

analyze their applicability to UNNA platforms that

motivate our work. We further introduce the existing

black-box optimization work.

2.1 Execution Paradigm on UNNAs

As Fig. 1 shows, cores in the same UNNA share

the uniform off-chip memory space and communicate

through the controller. To leverage the parallelism

of neural networks and make full use of hardware re-

sources, operations in CNNs are partitioned into several

sub-operations [15, 16] and sub-operations are mapped to

various processing cores. And cores work collabora-

tively to conduct the workloads. Chen et al. [15] de-

signed neural network patition strategies and migrated

traditional scheduling algorithms to parallel neural net-

work workload on multicore neural network accelera-

tor platforms. Zhang and Zhi [16] proposed a parallel

framework for multicore systems. This framework gene-

rates an effective splitting strategy by designing assis-

tant operations, and abstracts the neural network par-

Xiao-Bing Chen et al.: Tetris: Managing Memory for Uniform Memory Multicore Neural Network Accelerators 1257

tition into dynamic programming. Zhuang et al. [14]

proposed to reduce memory traffic by deep fusion on

neural network accelerators. In their design, several

layers are fused into a composite layer, corresponding

to an non-interruptable kernel. Long et al. [17] reduced

the launch kernel overhead by fusing several operators

into an enlarged kernel.

Unified Off-Chip Memory

NN-Acc … ControllerNN-Acc NN-Acc

Fig.1. Uniform memory multicore neural network accelerator
architecture. NN-Acc: neural network accelerator core.

For the execution paradigm on UNNA platforms,

we have the following observations.

1) The relative liveness intervals cannot be directly

analyzed by neural network typologies.

2) Execution flow analysis and inter-core synchro-

nization analysis are sufficient to deduce relative live-

ness intervals for each tensor.

We take Fig.2 as an example to illustrate the above

observations. Fig.2(a) is the original neural network,

consisting of a convolution layer, a pooling layer, and

three tensors, D0, D1, and D2. According to the exe-

cution paradigm, the original neural network can be

transformed into the neural network in Fig.2(b). And

the UNNA compiler implements all operations in the

transformed neural network in a non-interruptable ker-

nel, and the execution flow is shown in Fig.2(c). From

the perspective of the network topology alone, D11 and

D10 belong to different branches, and their liveness in-

tervals are non-overlap. But in reality, they are dis-

patched by different cores and executed simultaneously.

Therefore from the perspective of network typologies,

we may get the wrong memory reuse strategies. In case

of data pollution, tensors in the same kernel cannot

share the memory space by graph-level liveness ana-

lysis. But by instruction-level analysis, we can per-

form fine-grained liveness analysis and explore potential

memory sharing opportunities. The synchronization in-

struction has a count field and an ID field, and the count

field indicates the number of cores to be synchronized

and only synchronization instructions with the same

ID field are identified as the same group. For example,

D00 and D11 only appear in the execution flows of core

0 and core 1, respectively. And their access is sepa-

rated by the second group of synchronization with the

ID of 1. Therefore we can ensure that D00 and D11 can

share the same memory space. As shown in Fig.2(d),

we can get the memory reusability between tensors by

instruction-level liveness analysis.

2.2 Memory Management Systems

Driven by the constraint of memory space, some pi-

oneering management systems are proposed to reduce

conv

pool

conv

pool

Split

conv

pool

Concate

Core 0 Core 1

(a) (b)

// code segment of core 0:

load D

store D

store D

sync(id=0, count=2)

load D

sync(id=1, count=2)

conv

store D

load D

pool

store D

sync(id=2, count=2)

load D

load D

store D

// code segment of core 1:

sync(id=0, count=2)

load D

sync(id=1, count=2)

conv

store D

load D

pool

store D

sync(id=2, count=2)

(c) (d)

Non-Overlap Overlap

D

D

D

D

D
D

D

D

D

D

D

D D D D D D D D

D

D

D

D

D

D

D

D

Fig.2. Example of the execution paradigm on UNNAs. (a) Original neural network. (b) Partitioned neural network. (c) Execution
flow of each core. (d) Liveness analysis result. “conv” means the convolution layer, “split” means the split layer, and “concate” means
the concatenation layer.

1258 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

the neural network memory footprints on GPU plat-

forms. These systems are divided into two categories:

training scenarios oriented techniques [8, 9] and inference

scenarios oriented techniques [10, 18]. For the training

scenarios, vDNN [9] manages runtime memory by virtu-

alizing the memory usage of neural networks between

GPU and CPU memories. The run-time memory man-

ager in vDNN reduces memory footprints in the train-

ing phase by swapping inactive intermediate tensors out

to CPU memory and vice versa. SuperNeurons [8] prof-

its from three memory optimization strategies, liveness

analysis, unified tensor pool, and cost-aware recompu-

tation. Specifically, liveness analysis in SuperNeurons

is based on layer-wise data flow analysis. For the in-

ference scenarios, Pisarchyk and Lee [10] proposed the

shared object approach and the offset calculation ap-

proach to reduce model footprints. They explored vari-

ous strategies to share memory buffers among interme-

diate tensors in deep neural networks. Minakova and

Stefanov [18] proposed to reduce the CNN memory foot-

print at the cost of throughput decrease. They con-

verted the CNN into a functionally equivalent Cyclo-

Static Dataflow model, and found proper execution or-

der by existing embedded system design tools.

Overall, these methods can be classified into three

categories. The first is memory sharing by tensor live-

ness analysis. And the existing studies are all from the

perspective of network topology. As discussed in Sub-

section 2.1, the coarse-grained analysis may miss some

potential memory sharing opportunities on UNNA plat-

forms. The second is memory swapping between the

host memory and the device memory. Unlike the execu-

tive paradigm in GPU platforms, UNNAs treat a whole

neural network as a kernel and it is non-interruptable.

Therefore memory swapping is unapplicable to UNNA

platforms. The last one is cost-aware recomputing. The

last two strategies focus on training scenarios. And the

cost-aware recomputing technology [8] is orthogonal to

our work.

Besides, there are also memory management stu-

dies on neural network accelerators [19, 20]. FP-DNN [19]

reuses the DRAM space by allocating tensors whose life

spans do not intersect into the same physical buffer.

FP-DNN formulates the data buffer reuse problem as

a graph coloring problem and solves it by coloring the

interval graph with the minimum number of distinct

colors and assigning tensors with the same color to the

same physical buffer. LCMM [20] is a layer conscious

memory management framework for FPGA-based DNN

hardware accelerators. LCMM exploits the layer diver-

sity and the disjoint lifespan information of memory

buffers to utilize on-chip memory to improve the per-

formance of memory bound layers and thus the entire

performance of DNNs. LCMM leverages a customized

memory allocation algorithm and buffer sharing and

buffer splitting techniques to utilize on-chip memory

and reduce off-chip memory traffic. Different from these

frameworks, the design philosophy in our work is to de-

couple the memory access behavior and off-chip mem-

ory management, and we only focus on the off-chip

memory footprint optimization. We admit that the off-

chip memory and on-chip memory co-optimization is

significant for both memory footprint and performance,

and we leave it as our future study.

2.3 Black-Box Optimization

Searching a superior tensor permutation from the

whole permutation space can be viewed as a high-

dimensional black-box optimization problem. From

the perspective of generalizability, there are several re-

searches emphasizing the black-box optimization prob-

lems. One way is training an approximate regres-

sor through sampling and optimizing the fitted regres-

sor instead. Bayesian Optimization (BO) [21] and its

variants [22, 23] fall into this route. For high-dimensional

problems, BO requires an enormous amount of samples

to fit the model. And BO overemphasizes the boun-

dary of the search space which is less efficient. Another

way to optimize black-box problems is to partition the

exploration space and model local promising spaces.

LA-MCTS [24] is a typical representation. LA-MCTS

serves as a meta-level algorithm that recursively learns

space partition in a hierarchical manner and uses ex-

isting black-box optimizers as its local models. In each

iteration, LA-MCTS constructs a Monte Carlo search

tree, selects the subspace following the upper confidence

bound for adaptive exploration, and then uses the lo-

cal model to propose new samples. The evolutionary

algorithm (EA) is also for high dimensional black-box

optimizations. CMA-ES [25] is one of the most power-

ful stochastic numerical optimizers. It uses co-variance

matrix adaption to propose new samples with quadratic

intrinsic time and space complexity. But all these

optimization strategies aim to generic black-box opti-

mization and they totally inquire the block-box system

to score samples without any additional information.

Compared with these strategies, Tetris leverages supe-

rior sub-sequences to construct more efficient samples.

Xiao-Bing Chen et al.: Tetris: Managing Memory for Uniform Memory Multicore Neural Network Accelerators 1259

2.4 Motivation: Heuristic Static Memory

Management

For simplicity and efficiency, mainstream deep

learning frameworks like TensorFlow [26], PyTorch [27]

and Caffe [28] are broadly used to deploy neural net-

work applications. Since neural network architectures

are going deeper and wider, it is extremely challenging

to relieve the constraints of limited memory capacity

for UNNA platforms. Rethinking the process of live-

ness analysis, there are more opportunities to reuse the

memory space with fine-grained instruction-level ana-

lysis. Since the process of UNNAs’ kernels is uninter-

ruptible and the corresponding instructions are gene-

rated in the compilation phase, using a static method

for liveness analysis is feasible. Meanwhile, we notice

that, given the tensor sequence and the constraints of

whether every two tensors can use the same physical

space, the orders of tensor space allocation can affect

the memory reuse ratio by a greedy algorithm. As

shown in Fig.3, let us suppose there are three tensors

D0, D1 and D2 with the size of 5, 5 and 6, respec-

tively, in which D0 and D2 can share the same space

while D0 and D1, D1 and D2 cannot. The memory

sizes used with the order of D0, D1, D2 and D0, D2,

D1 are 16 and 11 as shown in scheme 1 and scheme

2 of Fig. 3 respectively. Therefore the choice of per-

mutation affects the efficiency of memory allocation.

While all permutations are too large to search, we no-

tice that some partial sub-sequences could be reserved

as superior partial solutions. Thus we adopt a genetic

algorithm to explore the search space to get a supe-

rior tensor permutation. We propose Tetris to manage

memory resources on UNNA platforms.

Space

T
im

e

Scheme 1

Scheme 2

D

D

D

D

D

D

Fig.3. Allocation with different permutations.

3 Framework Overview

Fig.4 provides an overview of Tetris. Tetris retrieves

multicore execution information from instructions gene-

rated by UNNA compilers and allocates the physical

space for each tensor. As shown in Fig.4, the workflow

of Tetris consists of two parts: the front-end and the

back-end.

1) The front-end takes multicore instructions as in-

put, extracts basic execution flows and synchronization

information among cores, and transforms them into a

relation graph. Tetris relies on the relation graph to

analyze relative liveness intervals for each tensor. Be-

fore analyzing the reusabilities among tensors, Tetris re-

moves redundant nodes and edges in the relation graph

to simplify the complexity of analysis. Finally, the

front-end analyzes reusabilities among tensors based on

the connectivity of the relation graph and generates a

symmetric boolean conflict matrix indicating whether

two tensors can share the same memory space.

2) The back-end allocates the memory space from

a memory pool, and tries to find the minimal require-

ment of the memory pool and each tensor’s offset in

Multicore Instructions

Intra-Core Tensor Usage Extraction

Intra-Core Synchronization Extraction

Graph

Representation

Simplification

Liveness Analysis

Reuse Matrix

Memory Allocation Strategy

Memory Pool

Front-End Back-End

Genetic Exploration
and Greedy Allocation

Fig.4. Overview of Tetris.

1260 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

the memory pool. Under constraints of the conflict ma-

trix, for every permutation of tensors, Tetris achieves

a specific memory allocation solution. In the huge per-

mutation space, Tetris explores with a heuristic genetic

algorithm [29]. Then, Tetris finds an optimal permuta-

tion with a minimal memory pool size.

4 Front-End Conflict Matrix Generation

This section describes the front-end of Tetris. The

front-end mainly comprises three parts: relation graph

generation, simplification, and liveness analysis. Rela-

tion graph generation consists of intra-core tensor us-

age extraction and inter-core synchronization extrac-

tion, representing tensor usage information in a rela-

tion graph. Simplification is used to remove unneces-

sary nodes in the relation graph and liveness analysis

finally generates a conflict matrix to indicate whether

two tensors can share the same memory space.

4.1 Relation Graph Generation

Intra-Core Tensor Usage Extraction. A relation

graph is used to represent the chronological access or-

der of each tensor, in which a node has an attribute

with a list of tensors, and an edge represents the rel-

ative access order of tensors between adjacent nodes.

Note that tensors in the same node cannot reuse the

same memory space and the tensor list in an auxiliary

node may be empty.

Tetris separates each core’s instructions from the

whole instructions by physical core ID. A processor

core’s instruction flow consists of three basic structures:

sequential structure, branch structure, and loop struc-

ture. Tetris recognizes corresponding structures by

matching specific instructions. Fig.5 shows the trans-

formations of these three basic structures. For the se-

quential structure in Fig.5(a), Tetris transforms it into

a sequential relation graph with a tensor for each node,

while for the branch structure in Fig.5(b) and the loop

structure in Fig.5(c), auxiliary nodes without tensors

are added in the instruction flows’ entry and exit points.

Local tensors in loop structures are carefully han-

dled. As the instructions shown in Fig.6(a), D2 and D3

are initialized in the loop body and they can share the

same memory space. To represent local tensors, we pro-

pose the hierarchy of tensor initialization which means

the level of tensor initialization is conducted in a nested

structure. By analyzing the hierarchy of tensor initial-

ization, instructions in Fig.6(a) are marked with the

flags of their levels. When conducting hierarchy n in

the process of generating a relation graph, nodes with

hierarchies larger than n should be excluded from the

body, and an additional serial partial graph with nodes

whose hierarchies are no more than n + 1 is added in

the periphery of the body. In this way, Tetris generates

a relation graph for single-core instructions.

Inter-Core Synchronization Extraction. In UNNA

platforms, processor cores run neural network work-

load collaboratively. They synchronize with others with

barrier instructions. Barrier instructions consist of two

functions: barrier arrive and barrier sync. A barrier

controller is used to record the status of the UNNA

(a) (b) (c)

use D

if cond

use D

else

use D

use D

use D

use D

label

use D

use D

goto label

use D

Code:

Relation

Graph: Code:

Relation
Graph:

Code:
Relation
Graph:

use D

use D

use D

use D

use D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Fig.5. Transformations of three basic structures for instruction flows. (a) Sequential structure. (b) Branch structure. (c) Loop
structure.

Xiao-Bing Chen et al.: Tetris: Managing Memory for Uniform Memory Multicore Neural Network Accelerators 1261

use <0>

label <0>

use <0>

use <0>

use <1>

use <1>

use <1>

use <1>

use <0>

goto label <0>

use <0>

init

use

init

label

use

use

init

use

use

init

use

use

use

goto label

use

Local Tensors:

Code: Hierarchy Code: Relation Graph:

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

DD

D

D/D

D

D

D
D

D

D

(b)(a) (c)

Fig.6. Transformation of the loop structure with local tensors. (a) Code with the loop structure and local tensors. (b) Hierarchy code
with level flags. (c) Transformed relation graph.

system using a tuple (id, sum, counter, core id, ...).

Cores with barrier arrive send a message (id, count)

to the barrier controller and continue to execute, while

cores with barrier sync instructions send messages to

the barrier controller and wait for the response from

the barrier controller. When the barrier controller

receives a message, it increases the counter variable

(counter) in the tuple. And the barrier controller re-

sponds to cores which send barrier sync instructions.

Then, cores which send barrier sync continue to run.

Such a mechanism ensures processor cores on a UNNA

platform work in concert efficiently.

As shown in Fig.7, for a group of synchronizations,

Tetris creates an auxiliary empty node for each core and

adds edges from all created auxiliary nodes to auxiliary

nodes of cores with barrier sync instructions.

4.2 Relation Graph Simplification

Firstly, we introduce Theorem 1 to connect the re-

lation graph with the reusability of every two tensors.

Theorem 1. For any two tensors, Di and Dj, that

are reusable if and only if that for any node Nim which

includes Di and any node Njn which includes Dj, there

exists at least one path between Nim and Njn and the

directions of all paths are the same.

Proof. Necessity. If Di and Dj are reusable, it

means the liveness interval intersection of Di and Dj

use D

barrier_arrive id=0, count=4

use D

use D

barrier_sync id=0, count=4

use D

Relation Graph:Code for 0/2/3:

Code for 1:

D D D D

D D D D

Fig.7. Transformations of synchronization information among different cores.

1262 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

is empty, that is, all access to Di must be ahead of Dj ,

and vice versa. Since the tensor access orders in discon-

nected nodes are undeterministic, all nodes consisting

of Di and Dj in the relation graph must have a path.

Meanwhile, if these exist a path from Nia to Njb and a

path from Njc to Nid, Di in Nia is accessed before Dj

in Njb and Dj in Njd is accessed before Di in Nic. And

the liveness intervals of Di and Dj intersect. Therefore

the directions of all paths should be the same.

Sufficiency. If all nodes including Di have at least a

path to nodes including Dj , and there is no path from

nodes including Dj to nodes including Di, then the ac-

cess to Di is ahead of the access to Dj , and vice versa.

Therefore the liveness intervals of Di and Dj do not

overlap, and they can reuse the same space. �
Based on Theorem 1, we summarize the following

three operations to simplify the relation graph, and

transform it into a directed acyclic graph.

Cycle Elimination. Since nodes in a cycle have the

same connectivity with nodes out of the cycle, and ten-

sors belonging to nodes in the cycle cannot reuse the

same memory space with each other, we represent cy-

cles in the relation graph with an auxiliary node. As

shown in Fig.8, tensors in the replaced auxiliary node

of the transformed relation graph are the union of the

eliminated cycles. For edges whose start nodes are out

of the cycle and end nodes are in the cycle, we replace

the end nodes with the auxiliary node. Analogously,

for edges whose start nodes are in the cycle and end

nodes are out of the cycle, we replace the start nodes

with the auxiliary node.

Cyclic Relation Graph:

Equivalent Relation Graph:

D

D

D

D

D D

D

D

D

D/D

D

D

Fig.8. Elimination of cycles in the relation graph.

Redundant Tensor Attributes Elimination. If a ten-

sor appears more than twice on any path, removing

tensors other than the start node and the end node can

still keep the reusability of the original graph. As shown

in the transformation 1○ of Fig.9, D1 in intermediate

nodes can be removed.

D/D

D

D D D

D
DD

D D

D

D D

D

D D

(b)(a) (c)

Fig.9. Elimination of redundant attributes and nodes in the
relation graph. (a) Original graph. (b) Redundant attributes
elimination. (c) Redundant nodes elimination.

Empty Node Elimination. Nodes with an empty ten-

sor list can be removed. Meanwhile, for edges whose

start nodes are empty nodes, we change the start nodes

to empty nodes’ precursors. For edges whose end nodes

are empty nodes, we change the end nodes to empty

nodes’ successors.

As shown in the transformation 2○ of Fig. 9, the

empty node is eliminated, edges related to this node

could be replaced, and the relation graph in Fig.9(b) is

transformed into that in Fig.9(c).

4.3 Liveness Analysis

At this stage, Tetris analyzes the simplified relation

graph, detects the connectivity of any two nodes, and

checks whether the connectivity of any two tensors sat-

isfies Theorem 1. Then, Tetris uses a boolean conflict

matrix to represent whether two tensors can share the

same memory space. For a workload with N tensors

used, the conflict matrix CN×N is defined as follows:

Ci×j =

{
true, if Di and Dj are reusable,
false, otherwise.

5 Back-End Memory Allocation

Tetris uses the First-Fit (FF) algorithm [30] to allo-

cate the memory space. As shown in Algorithm 1, given

a permutation of the tensor sequence, the FF algorithm

reserves a memory pool with initial size 0. For a tensor

to allocate, the space in the memory pool is divided into

two kinds of fragments, unreusable and reusable slices.

The FF algorithm scans from the beginning to the end

to find the first reusable slice with a size no less than

the tensor, and allocates the front part to the tensor. If

no suitable slice is found, the FF algorithm enlarges the

memory pool and allocates the tail space to the tensor.

The FF algorithm repeats the previous steps until all

tensors are allocated. Finally, the FF algorithm gets

the minimal size needed by the memory pool and the

offsets in the memory pool as tensors’ addresses.

Theorem 2. For every memory allocation solution,

there exists an equivalent or better solution by using the

Xiao-Bing Chen et al.: Tetris: Managing Memory for Uniform Memory Multicore Neural Network Accelerators 1263

FF algorithm with a specific tensor permutation.

Algorithm 1. First-Fit Algorithm

Input: data,C, N
Output: addr,max size

1 max size ⇐ 0, n ⇐ 0;
2 while n < N do
3 addr[n] = max size;
4 /* partition the allocated memory into blocks

according to whether they could be reused by data[n]
*/

5 blocks = sort by addr(data, n,C);
6 foreach block in blocks do
7 if is valid(block, data[n]) then
8 addr[n] = block.start;
9 break;

10 end

11 end
12 max size = max(max size, addr[n] + data[n].size);
13 n ⇐ n + 1;

14 end

Proof. For a memory allocation solution S with ten-

sor list (D1, D2, . . . , DN), sorting each tensor’s address

in ascending order generates a permutation of these

tensors (D′1, D
′
2, . . . , D

′
N). Then we prove that in the

memory allocation solution S′ of the FF algorithm with

permutation (D′1, D
′
2, . . . , D

′
N), the address addrFFi

of

each tensor D′i is no more than addrSi in S.

1) We assume the start address of the memory pool

is 0. Then for D′0, addrFF0
= 0 and addrS0

> 0.

2) If the assumption holds when allocating the first

k tensors, D′1, D
′
2, . . . , D

′
k, e.g.,

addrFFi 6 addrSi , ∀1 6 i 6 k.

We mark tensors that are not reusable with D′k+1 in

(D′1, D
′
2, . . . , D

′
k) as (Dr1, Dr2, . . . , Drm). We assume

endSi = addrSi + sizeSi , and then the following condi-

tions hold:

addrSk+1
> max(endSr1 , endSr2 , . . . , endSrm),

addrFFk+1
6 max(endFFr1 , endFFr2 , . . . , endFFrm).

Since max(addrFFr1
, addrFFr2

, . . . , addrFFrm
) 6

max(addrSr1 , addrSr2 , . . . , addrSrm) and sizeSi =

sizeFFi
, addrFFk+1

6 addrSk+1
.

3) By mathematical induction, for each tensor D′i,

addrFFi
6 addrSi

.

We mark the size of the memory pool is P , then

P = max(addr(Di) + size(Di)), and thus PFF 6 PS

and Theorem 2 holds. �
Theorem 2 shows that the FF algorithm can find

the best solution by enumerating all permutations. The

permutations of tensors affect the results of the FF al-

gorithm. The number of n tensors’ permutations is n!

and these permutations compose the whole searching

space. But the searching space is too large to enumer-

ate. The back-end leverages a genetic algorithm to ex-

plore the huge searching space heuristically and selects

an optimal solution.

Fig.10 shows the architecture of the genetic algo-

rithm. A tensor permutation is encoded as a chro-

mosome to represent an individual in the genetic al-

gorithm, and parameters in the chromosome are called

genes. Many individuals form a population. At the be-

ginning of processing, an initialized population is gene-

rated randomly. In the process of evolution, we design

a function to evaluate the fitness of individuals. Indi-

viduals with higher fitness values have greater oppor-

tunities for reproduction. The genetic algorithm uses

the crossover operation to recombine two individuals’

genes and generate new individuals. Some genes may

mutate with a pretty low probability, and mutation is

pretty useful to jump out of the local optimum. De-

tails of these phases implemented in Tetris are shown

as follows.

Begin

Population

Initialization

Fitness Calculation

Selection

Termination
Conditions

Satisfy?

End

Mutation

Crossover

No

Yes

Fig.10. Architecture of the genetic algorithm.

Individual Representation. Each individual is a per-

mutation of tensors to allocate. For example, if there

are three tensors, the permutation could be (1, 2, 3),

(1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), where each

item means a permutation of tensors to allocate in the

FF algorithm.

Population Initialization. We initialize the popu-

lation by randomly permutating tensors.

Fitness Function. We use the FF algorithm as the

fitness function (see Algorithm 1). In a population with

m individuals p1, p2, ..., pm, for a specific individual pi,

the FF algorithm uses the chromosome as input and

calculates the size si of the memory pool needed. Then

1264 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

the fitness function f(pi) is f(pi) = 1/si. Individuals

with higher fitness values have greater possibilities to

pass on their genes to the next generation.

Crossover Strategy. We randomly select two in-

dividuals as parents to reproduce an individual. As

shown in Fig.11(a) and Fig.11(b), we select a continu-

ous sequence A from the first parent, remove elements

of A in the second parent to get B, and then insert

A into a random position of B to reproduce a child.

A partial sequence in the evolved chromosome is highly

likely to have a high memory reuse ratio, and we should

pass such high-quality partial permutations onto the

offspring.

Mutation Strategy. As shown in Fig.11(c), we se-

lect an individual randomly, choose an element from

its chromosome, and then move the element to another

position to generate a new chromosome. The newly-

generated chromosome is a mutated individual.

Selection Strategy. We select the best several in-

dividuals based on their fitness values and pass their

chromosomes to the next generation.

6 Experiments

In this section, we introduce our experimental setup,

and present the results of our experimental studies that

evaluate the performance of each component in Tetris.

6.1 Experimental Setup

UNNA Platform. In the experiment, we use a

multicore architecture based on Cambricon-X [31] as

the hardware platform to run CNNs. Each core

in Cambricon-X has 16 processing engines, a 1 MB

Synapse Buffer, and a 512 KB Neuron Buffer. And

the Cambricon-X platform has a 4 GB DRAM to save

model data, input/output data, and intermediate data.

The core number in this platform is configurable. We

use the upgraded version of DLPlib [32] as the neural

network compiler in Cambricon-X. The upgraded ver-

sion of DLPlib provides API to efficiently get the gene-

rated instructions and supports multicore hardware ar-

chitectures. And the multicore system supports run-

ning a neural network collaboratively with various kinds

of neural network partition strategies.

Implementation and Hyper-Parameters. We imple-

ment Tetris in C++ language, and the genetic algo-

rithm is configured with the maximal number of gen-

erations of 100, the maximal population size of 50, the

crossover rate of 90%, and the mutation rate of 10%.

Baselines. To evaluate the memory sharing effi-

ciency of Tetris, we evaluate experiments from two

hands, i.e., a memory reuse ratio and a convergence

speed. To illustrate that Tetris can reduce memory ca-

pacity constraint significantly, we compare the memory

reuse ratio of the genetic algorithm in Tetris and two

other algorithms, i.e., the memory allocation with the

First-Fit algorithm as shown in Algorithm 1 and the

best-fit with coalescing algorithm (BFC) implemented

in TensorFlow [26]. Meanwhile, we take the memory ca-

pacity without memory reuse as the baseline, for which

the memory capacity equals the sum of all intermedi-

ate tensors. To show the efficiency of the exploration

strategy used in the genetic algorithm, we take several

state-of-the-art black-box optimization algorithms and

the random search algorithm as baselines and compare

the convergence speed. The black-box optimization al-

gorithms include Bayesian Optimization (BO) [22], LA-

MCTS [24] and CMA-ES [25]. For fairness, each algo-

rithm is configured with the same number of permuta-

tions in each iteration. We choose the result with the

minimal memory pool size as the final solution.

Performance Metrics. We take the memory reduc-

tion ratio (MRR) as the memory reuse evaluation met-

4 3 5 1 6 2

3 4 1 5 6 2

5 3 4 1 6 2

A. B.

Child:

2 6 3 4 1 5Parents:

a. Subsequence

Selection:

b. Subsequence

Combination:

5 3 41 6 2Child:
c. Mutation:

Fig.11. New samples generation strategies in the genetic algorithm.

Xiao-Bing Chen et al.: Tetris: Managing Memory for Uniform Memory Multicore Neural Network Accelerators 1265

ric. For a specific task, if the memory space allocated

by Tetris is s bytes, and the memory space without

memory reuse is n bytes, then we have MRRTetris =

(n− s)/n.

Benchmark. We use several typical neural network

models commonly used by previous studies [8–10] as our

benchmarks, including ResNet50, MobileNetV1, Mo-

bileNetV2, InceptionV3, GoogLeNet, and DenseNet.

We run these networks on the Cambricon platforms

configured with single-core, quad-core and 16-core, re-

spectively. Through these experiments, we evaluate the

memory reuse ratio and the convergence speed of Tetris

to evaluate the efficiency of Tetris.

6.2 Components Evaluations

6.2.1 Relation Graph Simplification

To facilitate the liveness analysis of tensors, we de-

sign several operations to simplify the relation graph.

Fig.12 shows the speedup of the liveness analysis process

by graph simplification. The speedup on the single-

core, quad-core and 16-core platforms increases with

the the number of processors. As the number of pro-

cessors increases on the UNNA platform, the synchro-

nization relationships among cores and the partitioned

neural network topologies are more complex. And there

are more opportunities to optimize original relation

graphs. Overall, on the 16-core Cambricon-X platform,

the graph simplification accelerates the liveness analysis

procedure by up to 2.5x.

1.68
1.37

1.73
1.89

1.35

1.97

2.99

1.89
2.06

2.40

1.58

2.32

4.38

2.53
2.72

3.14

1.96

2.74

0

1

2

3

4

5

R
es
N
et
50

M
ob

ile
N
et
V
1

M
ob

ile
N
et
V
2

In
ce
pt

io
nV

3

G
oo

gL
eN

et

D
en

se
N
et

S
p
e
e
d
u
p
 (

x
)

Single-Core
Quad-Core
16-Core

Fig.12. Compilation time optimization by graph simplification.

6.2.2 Liveness Analysis

To evaluate the efficiency of our proposed

instruction-level tensor liveness analysis, we take the

layer-wise liveness analysis as the baseline. For tensors

in the same fused subgraph, we have no prior knowledge

about behaviors of accessing tensors by the layer-wise

liveness analysis. To ensure the correctness, we treat

that tensors in a fused subgraph use different mem-

ory spaces. For instruction-level liveness analysis and

layer-wise analysis, we take the First-Fit algorithm to

allocate the DRAM space with the same tensor per-

mutation. Fig.13 shows the normalized memory space

for six typical neural networks on Cambricon-X plat-

form with 1 core, 4 cores and 16 cores, respectively.

For the single-core platform in Fig. 13(a), the com-

piler stack does not parition neural network models and

the instruction-level and the layer-wise liveness analysis

achieve the same results. But for the quad-core and 16-

core platforms in Fig.13(b) and Fig.13(c) respectively,

the average memory reduction ratios by instruction-

layer liveness analysis are 7.57% and 6.85% higher than

those by layer-wise liveness analysis, respectively. Since

instruction-level liveness analysis has a smaller granu-

larity, it has the potential to find memory reuse oppor-

tunities.

6.2.3 Heuristic Memory Allocation

The back-end of Tetris uses the customized genetic

algorithm (GA) to search tensor permutations. Given

a specific permutation, Tetris generates a memory allo-

cation strategy deterministically by the FF algorithm.

We take the FF algorithm and the BFC algorithm as

references for comparison. We calculate the MRRs of

these algorithms relative to the baseline without mem-

ory reuse on all evaluated neural networks. The details

for our configurations and results are shown in Table 1.

The average MRRs in the Cambricon-X platform

with a single core for the genetic algorithm, the FF

algorithm, and the BFC algorithm are 91.1%, 89.8%,

89.9%, respectively. Therefore all these algorithms

for neural networks running with a single core achieve

high MRRs and the genetic algorithm implemented in

Tetris achieves slightly higher MRRs. For GoogLeNet

with a single-core, and InceptionV3 with a single-core

Cambricon-X platform, MRRs of all three algorithms

are 84.5%, since they all achieve the optimal result.

In the quad-core and 16-core Cambricon-X plat-

forms, the average MRRs for the BFC algorithm are

56.6% and 50.7%, respectively, whereas these for ge-

netic algorithms are 91.9% and 87.9%, respectively.

Our proposed method prompts MRR by 35.3% and

37.2%, respectively. MRR for GoogLeNet with the

BFC algorithm running on the 16-core Cambricon-X

platform is 27.7%, far less than 79.0% achieved with

1266 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

Layer-Wise Instruction-Level

8
9
.5

8
9
.5

9
0
.1

9
1
.3

8
4
.5 9
4
.0

8
9
.5

8
9
.5

9
0
.1

9
1
.3

8
4
.5 9
4
.0

0

20

40

60

80

100

ResNet50 MobileNetV1 MobileNetV2 InceptionV3 GoogLeNet DenseNet

(a)

M
R

R
 (

%
)

8
3
.2

8
4
.7

8
6
.0

8
8
.2

7
9
.1

7
7
.28
8
.2

8
9
.8

9
0
.7

9
3
.9

9
0
.6

9
0
.6

0

20

40

60

80

100

ResNet50 MobileNetV1 MobileNetV2 InceptionV3 GoogLeNet DenseNet

M
R

R
 (

%
)

(b)

8
7
.7

8
5
.9

8
7
.2

8
2
.4

6
3
.6 6
9
.7

9
5
.1

8
9
.3

9
0
.3

8
7
.6

7
7
.0

7
8
.3

0

20

40

60

80

100

ResNet50 MobileNetV1 MobileNetV2 InceptionV3 GoogLeNet DenseNet

M
R

R
 (

%
)

(c)

Fig.13. MRR comparison of layer-wise liveness analysis and instruction-level liveness analysis on Cambricon-X platforms with different
numbers of cores. (a) Single-core Cambricon-x platform. (b) Quad-core Cambricon-X platform. (c) 16-core Cambricon-X platform.

Table 1. Memory Footprint Comparisons (MRR) for Different Algorithms in Cambricon-X Platform with Different Numbers of Cores

Network Single-Core Quad-Core 16-Core

GA FF BFC GA FF BFC GA FF BFC

ResNet50 0.913 0.895 0.895 0.892 0.882 0.730 0.952 0.951 0.659

MobileNetV1 0.914 0.895 0.895 0.930 0.898 0.650 0.925 0.893 0.701

MobileNetV2 0.910 0.901 0.901 0.922 0.907 0.729 0.919 0.903 0.723

InceptionV3 0.932 0.913 0.917 0.939 0.939 0.499 0.884 0.876 0.353

GoogLeNet 0.845 0.845 0.845 0.906 0.906 0.457 0.790 0.770 0.277

DensetNet 0.951 0.940 0.940 0.924 0.906 0.331 0.804 0.783 0.330

Average 0.911 0.898 0.899 0.919 0.906 0.566 0.879 0.863 0.507

the genetic algorithm implemented in Tetris. There-

fore for neural networks running on UNNA platforms,

Tetris achieves a much higher memory reuse ratio than

the BFC algorithm implemented in TensorFlow. Mean-

while, compared with the FF algorithm, the genetic

algorithm achieves higher MRRs, which shows that or-

ders in which intermediate tensors are allocated to af-

fect memory reuse ratio, and exploring permutation

space is quite necessary.

In general, Tetris with the genetic algorithm for

these six neural networks achieves the memory reduc-

tion ratio of 79.0%–95.2%, which alleviates the DRAM

capacity demand for deploying neural network models

in UNNA platforms.

Xiao-Bing Chen et al.: Tetris: Managing Memory for Uniform Memory Multicore Neural Network Accelerators 1267

6.2.4 A Holistic Study

Tetris uses instruction-level liveness analysis to find

the reusability among tensors and the customized ge-

netic algorithm to search for an appropriate permu-

tation for allocating the memory space. We take the

strategy that uses layer-wise liveness analysis and the

First-Fit memory allocation (LW+FF) as the baseline.

We futher make a comparison to depict the efficiency

of instruction-level (IL) liveness analysis and the cus-

tomized genetic algorithm (GA) for searching an appro-

priate permutation. Fig.14 illustrates the optimization

effects intuitively. The instruction-level liveness ana-

lysis can find more opportunities with a fine-grained

granularity for the tensors between processing cores and

the same kernel. The strategy with the instruction-

level liveness analysis and the first-fit memory alloca-

tion (IL+FF) reduces 24.1%–60.5% memory footprints.

By exploring the permutation of the tensor allocation

sequence, (IL+GA) further reduces memory footprints

by 34.3%–60.8%. The genetic searching process can be

seen as an exploration to reduce memory fragmenta-

tion.

60.5 60.8

24.2

46.9

24.1

37.0
29.3

34.3

36.8
42.2

28.4
35.4

0

20

40

60

80

LW+FF IL+FF IL+GA

M
R

R
 (

%
)

ResNet50 MobileNetV1 MobileNetV2
InceptionV3 GoogLeNet DenseNet

Optimization 1:
LW+FF → IL+FF

IL+FF IL+GA
Optimization 2:

→

Fig.14. Holistic study on memory footprint reduction optimiza-
tions.

6.3 Evaluation on Original Neural Networks

Since layer-by-layer execution is also a common exe-

cution paradigm for UNNAs [19, 20], we experiment with

this execution method to test the versatility of Tetris.

We take the First-Fit algorithm as the baseline, and

present the memory footprint reduction of Tetris. As

shown in Fig.15, Tetris outperforms the First-Fit algo-

rithm in five out of six neural networks with an average

of 13.57% memory footprint reduction. The memory

footprint reduction is due to the fact that the tensor

permutation explored by Tetris can effectively reduce

memory fragmentation.

17.2 18.6

9.5

18.0

0.0

18.2

0

4

8

12

16

20

R
es
N
et
50

M
ob

ile
N
et
V
1

M
ob

ile
N
et
V
2

In
ce
pt

io
nV

3

G
oo

gL
eN

et

D
en

se
N
et

M
R

R
 (

%
)

Fig.15. Memory footprint comparison for Tetris on original neu-
ral networks.

6.4 Convergence Comparison

To evaluate the efficiency of the customized genetic

algorithm in Tetris (GA), we compare GA with the

state-of-the-art baselines from different algorithm cat-

egories ranging from MCTS (LA-MCTS), Evolution-

ary Algorithm (EA), and Bayesian Optimization (BO).

We use the open-source implementations [24] as base-

lines and ensure the same number of samples in each

iteration for fairness. As shown in Fig.16, in a 16-core

Cambricon-X platform, we compute the MRRs of six

typical neural network models for each iteration. We

have the following observations.

• In total, GA consistently outperforms the other

optimization algorithms in the memory reduction ra-

tio. Four in six neural networks GA achieves a higher

memory reduction ratio. For MobileNetV1 and Mo-

bileNetV2, the optimal solutions are pretty simple and

all these exploration algorithms find optimal strategies

with same memory reduction ratios.

• In the huge permutation space, several permuta-

tions correspond to the same memory reduction ratio

value. And the searching space has several long and

flat valleys, which makes optimization hard. In these

exploration curves, there exist several jumping points

which represent the jump from one valley to another.

• GA performs better in rapidity of convergence.

In Fig.16, all the other curves are below the curves of

GA for all models, which indicates the customized ge-

netic algorithm in Tetris converges faster than the other

algorithms. The other exploration algorithms simply

treat the exploration problem as a black-box optimiza-

tion problem. But the customized genetic algorithm ex-

ploits partial superior results to generate high-quality

samples efficiently. In case of trapping into local opti-

mum, the customized genetic algorithm jumps out of

local optimum by introducing random partial samples

in the mutation phase.

1268 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

94.5

94.7

94.9

95.1

95.3

0 20 40 60 80 100

M
R

R
 (

%
)

Iteration

GA RAND MTCS EA BO

92.2

92.3

92.4

92.5

92.6

0 20 40 60 80 100

M
R

R
 (

%
)

Iteration

91.2

91.4

91.6

91.8

92.0

0 20 40 60 80 100

M
R

R
 (

%
)

Iteration

87.0

87.4

87.8

88.2

88.6

0 20 40 60 80 100

M
R

R
 (

%
)

Iteration

77.5

77.9

78.3

78.7

79.1

0 20 40 60 80 100

M
R

R
 (

%
)

Iteration

78.8

79.2

79.6

80.0

80.4

80.8

0 20 40 60 80 100

M
R

R
 (

%
)

Iteration

(b)(a) (c)

(e)(d) (f)

Fig.16. Convergence comparisons on a 16-core Cambricon-X platform. (a) ResNet50. (b) MobileNetV1. (c) MobileNetV2. (d)
InceptionV3. (e) GoogLeNet. (f) DenseNet.

6.5 Performance Evaluation

We further evaluate the impact of Tetris on per-

formance. We treat layer-wise liveness analysis and the

First-Fit allocation algorithm as the baseline, and make

a comparison between the baseline and Tetris. The re-

sult shows that Tetris has a negligible impact on per-

formance, with the performance change in the range

of −1.54%–3.17%. The design philosophy of Tetris is

to decouple performance optimization in the compila-

tion procedure and off-chip memory management. And

we conduct optimizations like on-chip memory reuse

and off-chip memory traffic reduction in the compila-

tion procedure. Thus, we mainly focus on memory

footprints reduction and treat the performance opti-

mization as an orthogonal work.

7 Conclusions

Neural network architectures become deeper and

wider, and the connections between operations become

denser. Memory capacity becomes the bottleneck in

UNNA platforms to deploy neural network applica-

tions, especially in edge devices with small memory

capacity. In this paper, we proposed an automatic

memory management framework called Tetris to im-

prove the DRAM reuse ratio. Tetris uses instruction-

level information to make fine-grained liveness analysis,

and uses the genetic algorithm to allocate the memory

space heuristically. Experiments on typical neural net-

works showed that Tetris promotes memory reuse ratio

dramatically and the heuristic method converges fast.

Tetris achieves an average memory reduction ratio of

91.9% and 87.9% for quad-core and 16-core Cambricon-

X platforms, respectively.

The instruction-level liveness analysis and the

heuristic memory allocation algorithm in Tetris allevi-

ate memory space bottleneck effectively. And in the fu-

ture, we will focus on the off-chip memory and on-chip

memory co-optimization, and take both the memory

footprint and performance into consideration.

References

[1] He K, Zhang X, Ren S, Sun J. Delving deep into rec-

tifiers: Surpassing human-level performance on ImageNet

classification. In Proc. the 2015 IEEE International Confe-

rence on Computer Vision, Dec. 2015, pp:1026-1034. DOI:

10.1109/ICCV.2015.123.

[2] Devlin J, Chang M W, Lee K, Toutanova K. BERT:

Pre-training of deep bidirectional transformers for lan-

guage understanding. arXiv:1810.04805, 2018. https://ar-

xiv.org/abs/1810.04805, April 2021.

[3] Silver D, Huang A, Maddison C J et al. Mastering the game

of Go with deep neural networks and tree search. Nature,

2016, 529(7587): 484-489. DOI: 10.1038/nature16961.

[4] Silver D, Schrittwieser J, Simonyan K et al. Mastering

the game of Go without human knowledge. Nature, 2017,

550(7676): 354-259. DOI: 10.1038/nature24270.

https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270

Xiao-Bing Chen et al.: Tetris: Managing Memory for Uniform Memory Multicore Neural Network Accelerators 1269

[5] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classi-

fication with deep convolutional neural networks. In Proc.

the 25th International Conference on Neural Information

Processing Systems, Dec. 2012, pp.1097-1105.

[6] Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated

residual transformations for deep neural networks. In

Proc. the 2017 IEEE Conference on Computer Vision

and Pattern Recognition, Jul. 2017, pp.1492-1500. DOI:

10.1109/CVPR.2017.634.

[7] Shazeer N, Mirhoseini A, Maziarz K, Davis A, Le Q, Hin-

ton G, Dean J. Outrageously large neural networks: The

sparsely-gated mixture-of-experts layer. arXiv:1701.06538,

2017. https://arxiv.org/abs/1701.06538, Jan. 2021.

[8] Wang L, Ye J, Zhao Y, Wu W, Li A, Song S L, Xu Z,

Kraska T. Superneurons: Dynamic GPU memory mana-

gement for training deep neural networks. In Proc. the

23rd ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming, Feb. 2018, pp.41-53. DOI:

10.1145/3178487.3178491.

[9] Rhu M, Gimelshein N, Clemons J, Zulfiqar A, Keckler S

W. vDNN: Virtualized deep neural networks for scalable,

memory-efficient neural network design. In Proc. the 49th

Annual IEEE/ACM International Symposium on Microar-

chitecture, Oct. 2016, Article No. 18. DOI: 10.1109/MI-

CRO.2016.7783721.

[10] Pisarchyk Y, Lee J. Efficient memory management for deep

neural net inference. arXiv:2001.03288, 2020. https://arxi-

v.org/abs/2001.03288, Jan. 2021.

[11] Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran

J, Catanzaro B, Shelhamer E. cuDNN: Efficient primi-

tives for deep learning. arXiv:1410.0759, 2014. https://a-

rxiv.org/abs/1410.0759, April 2021.

[12] Barrachina S, Castillo M, Igual F D, Mayo R, Quintana-

Orti E S. Evaluation and tuning of the level 3 CUBLAS

for graphics processors. In Proc. the 2008 IEEE Interna-

tional Symposium on Parallel and Distributed Processing,

Apr. 2008. DOI: 10.1109/IPDPS.2008.4536485.

[13] Mahmoud M, Siu K, Moshovos A. Diffy: A Déjà vu-free

differential deep neural network accelerator. In Proc. the

51st Annual IEEE/ACM International Symposium on Mi-

croarchitecture, Oct. 2018, pp.134-147. DOI: 10.1109/MI-

CRO.2018.00020.

[14] Zhuang Y, Peng S, Chen X, Zhou S, Zhi T, Li W, Liu

S. Deep fusion: A software scheduling method for memory

access optimization. In Proc. the 16th IFIP WG 10.3 Inter-

national Conference on Network and Parallel Computing,

Aug. 2019, pp.277-288. DOI: 10.1007/978-3-030-30709-7 22.

[15] Chen X, Peng S, Jin L, Zhuang Y, Song J, Du W, Liu S,

Zhi T. Partition and scheduling algorithms for neural net-

work accelerators. In Proc. the 13th International Sympo-

sium on Advanced Parallel Processing Technologies, Aug.

2019, pp.55-67. DOI: 10.1007/978-3-030-29611-7 5.

[16] Zhang X, Zhi T. Machine learning inference frame-

work on multicore processor. Journal of Computer Re-

search and Development, 2019, 56(9): 1977-1987. DOI:

10.7544/issn1000-1239.2019.20180786. (in Chinese)

[17] Long G, Yang J, Zhu K, Lin W. Fusion stitching:

Deep fusion and code generation for tensorflow computa-

tions on GPUs. arXiv:1811.05213, 2018. https://arxiv.or-

g/abs/1811.05213, April 2021.

[18] Minakova S, Stefanov T. Buffer sizes reduction for

memory-efficient CNN inference on mobile and embed-

ded devices. In Proc. the 23rd Euromicro Conference

on Digital System Design, Aug. 2020, pp.133-140. DOI:

10.1109/DSD51259.2020.00031.

[19] Guan Y, Liang H, Xu N, Wang W, Shi S, Chen X, Sun G,

Zhang W, Cong J. FP-DNN: An automated framework for

mapping deep neural networks onto FPGAs with RTL-HLS

hybrid templates. In Proc. the 25th IEEE Annual Interna-

tional Symposium on Field-Programmable Custom Com-

puting Machines, April 30-May 2, 2017, pp.152-159. DOI:

10.1109/FCCM.2017.25.

[20] Wei X, Liang Y, Zhang P, Yu C H, Cong J. Over-

coming data transfer bottlenecks in DNN accelerators

via layer-conscious memory managment. In Proc. the

2019 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, Feb. 2019, pp.120-120. DOI:

10.1145/3289602.3293947.

[21] Frazier P I. A tutorial on Bayesian optimization. arXiv:1-

807.02811, 2018. https://arxiv.org/abs/1807.02811, April

2021.

[22] Eriksson D, Pearce M, Gardner J R, Turner R, Poloczek

M. Scalable global optimization via local Bayesian op-

timization. arXiv:1910.01739, 2019. https://arxiv.org/ab-

s/1910.01739, April 2021.

[23] Nayebi A, Munteanu A, Poloczek M. A framework for

Bayesian optimization in embedded subspaces. In Proc. the

36th International Conference on Machine Learning, June

2019, pp.4752-4761.

[24] Wang L, Fonseca R, Tian Y. Learning search space partition

for black-box optimization using Monte Carlo tree search.

arXiv:2007.00708, 2020. https://arxiv.org/abs/2007.00708,

April 2021.

[25] Varelas K, Auger A, Brockhoff D, Hansen N, ElHara O A,

Semet Y, Kassab R, Barbaresco F. A comparative study of

large-scale variants of CMA-ES. In Proc. the 15th Interna-

tional Conference on Parallel Problem Solving from Nature,

Sept. 2018, pp.3-15. DOI: 10.1007/978-3-319-99253-2 1.

[26] Abadi M, Barham P, Chen J et al. TensorFlow: A system

for large-scale machine learning. In Proc. the 12th USENIX

Symposium on Operating Systems Design and Implemen-

tation, November 2016, pp.265-283.

[27] Paszke A, Gross S, Massa F et al. PyTorch: An im-

perative style, high-performance deep learning library.

arXiv:1912.01703, 2019. https://arxiv.org/abs/1912.01703,

April 2021.

[28] Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Gir-

shick R, Guadarrama S, Darrell T. Caffe: Convolutional

architecture for fast feature embedding. In Proc. the 22nd

ACM International Conference on Multimedia, Nov. 2014,

pp.675-678. DOI: 10.1145/2647868.2654889.

[29] Whitley D. A genetic algorithm tutorial. Statistics and

Computing, 1994, 4(2). DOI: 10.1007/BF00175354.

[30] Knuth D. The Art of Computer Programming, Volume I:

Fundamental Algorithms. Addison-Wesley, 1968.

https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1145/3178487.3178491
https://doi.org/10.1109/MICRO.2016.7783721
https://doi.org/10.1109/MICRO.2016.7783721
https://doi.org/10.1109/IPDPS.2008.4536485
https://doi.org/10.1109/MICRO.2018.00020
https://doi.org/10.1109/MICRO.2018.00020
https://doi.org/10.1007/978-3-030-30709-7_22
https://doi.org/10.1007/978-3-030-29611-7_5
https://doi.org/10.7544/issn1000-1239.2019.20180786
https://doi.org/10.1109/DSD51259.2020.00031
https://doi.org/10.1109/FCCM.2017.25
https://doi.org/10.1145/3289602.3293947
https://doi.org/10.1007/978-3-319-99253-2_1
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1007/BF00175354

1270 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

[31] Zhang S, Du Z, Zhang L, Lan H, Liu S, Li L, Guo Q, Chen

T, Chen Y. Cambricon-X: An accelerator for sparse neural

networks. In Proc. the 49th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, Oct. 2016. DOI:

10.1109/MICRO.2016.7783723.

[32] Lan H Y, Wu L Y, Zhang X, Tao J H, Chen X Y, Wang

B R, Wang Y Q, Guo Q, Chen Y J. DLPlib: A library for

deep learning processor. Journal of Computer Science and

Technology, 2017, 32(2): 286-96. DOI: 10.1007/s11390-017-

1722-2.

Xiao-Bing Chen received his B.E.

degree in information security from

Wuhan University, Wuhan, in 2016.

He is currently a Ph.D. candidate

in University of Chinese Academy of

Sciences, Beijing. His research interests

include deep learning and compilation

optimization.

Hao Qi received his B.E. degree

in computer science from Huazhong

University of Science and Technology,

Wuhan, in 2018. He is currently a

Master student at University of Science

and Technology of China, Hefei. His

research interests include compilation

optimization.

Shao-Hui Peng received his B.E.

degree in computer science from Uni-

versity of Chinese Academy of Sciences,

Beijing, in 2018. He is currently a

Ph.D. candidate in University of Chi-

nese Academy of Sciences, Beijing. His

research interests include reinforcement

learning.

Yi-Min Zhuang received his B.E.

degree in electronic engineering from

University of Science and Technology of

China, Hefei, in 2016. He is currently

a Ph.D. candidate in University of

Chinese Academy of Sciences, Beijing.

His research interests include deep

learning and compiler of neural network

accelerator.

Tian Zhi received her B.E. degree in

biomedical engineering from Zhejiang

University, Hangzhou, in 2009, and her

Ph.D. degree in information engineering

from Institute of Electrics (IE), Chinese

Academy of Sciences, Beijing, in 2014.

She is currently an associate professor

at the Institute of Computing Techno-

logy, Chinese Academy of Sciences, Beijing. Her research

interests include computer architecture and computational

intelligence.

Yun-Ji Chen graduated from the

Special Class for the Gifted Young,

University of Science and Technology of

China, Hefei, in 2002. He received his

Ph.D. degree in computer science from

Institute of Computing Technology

(ICT), Chinese Academy of Sciences,

Beijing, in 2007. He is currently a

professor at ICT, Beijing. His research interests include

parallel computing, microarchitecture, hardware verifica-

tion, and computational intelligence.

https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1007/s11390-017-1722-2
https://doi.org/10.1007/s11390-017-1722-2

	1 Introduction
	2 Background and Motivation
	2.1 Execution Paradigm on UNNAs
	2.2 Memory Management Systems
	2.3 Black-Box Optimization
	2.4 Motivation: Heuristic Static Memory Management

	3 Framework Overview
	4 Front-End Conflict Matrix Generation
	4.1 Relation Graph Generation
	4.2 Relation Graph Simplification
	4.3 Liveness Analysis

	5 Back-End Memory Allocation
	6 Experiments
	6.1 Experimental Setup
	6.2 Components Evaluations
	6.2.1 Relation Graph Simplification
	6.2.2 Liveness Analysis
	6.2.3 Heuristic Memory Allocation
	6.2.4 A Holistic Study

	6.3 Evaluation on Original Neural Networks
	6.4 Convergence Comparison
	6.5 Performance Evaluation

	7 Conclusions

