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Graph analytics, which mainly includes graph processing, graph mining, and graph learning, has become increasingly important
in several domains, including social network analysis, bioinformatics, and machine learning. However, graph analytics
applications suffer from poor locality, limited bandwidth, and low parallelism owing to the irregular sparse structure, explosive
growth, and dependencies of graph data. To address those challenges, several programming models, execution modes, and
messaging strategies are proposed to improve the utilization of traditional hardware and performance. In recent years, novel
computing and memory devices have emerged, e.g., HMCs, HBM, and ReRAM, providing massive bandwidth and parallelism
resources, making it possible to address bottlenecks in graph applications. To facilitate understanding of the graph analytics
domain, our study summarizes and categorizes current software systems implementation and domain-specific architectures.
Finally, we discuss the future challenges of graph analytics.

1. Introduction

The amount of graph data that represents relationships is
rapidly expanding as a result of the widespread populariza-
tion of the Internet, the emergence of the Internet+, the dig-
ital transformation of society, and the fast growth of the
economy [1]. For example, Facebook’s social network con-
tains more than 1.71 billion graph vertices and 100 billion
graph edges, according to the most recent statistics it pro-
vided in December 2016. The need for connected data anal-
ysis is rising at the same time, leading to an increase in the
volume of graph-structured data in many significant appli-
cation sectors, including financial analysis, power system
operation, social life, and national security monitoring. To
effectively analyze and derive relevant information from this
graph data, graph computing technology is quickly being
developed. Applications for graph computing are increas-
ingly moving away from traditional binary scenarios and

into a variety of kinds, structures, and attributes [2, 3]. Com-
plex graph applications, such as graph mining and graph
learning, are continuously developing in addition to tradi-
tional graph applications (such as graph processing). In this
paper, each of these names (graph processing, graph mining,
and graph learning) refers only to a specific class of applica-
tions as follows:

Graph Processing. Conventional graph algorithms (such
as the PageRank for ranking, the adsorption for video rec-
ommendation, the single-source shortest path (SSSP) for
road selection, and the connected component for clustering)
are designed to process graphs iteratively until convergence.
Many operations of such graph algorithms are based on tra-
versal operations and generally focus on performing linear
algebra-like computational operations on the graph. Com-
pared with traditional computing models, iterative graph
algorithms have rich, efficient, and agile analysis capabilities
for relational data, and are widely used in real life. For
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example, Google needs to regularly rank the influence of
hundreds of millions of web pages on the web, and Facebook
needs to iteratively analyze its social network graph to con-
trol the structural state of the social network and improve
the accuracy of advertising delivery

Graph Mining. Graph mining (such as clique finding
(CF), motif counting (MC), and frequent subgraph mining
(FSM) aims to discover specific structures or patterns in
graphs. In addition to the properties of traditional data min-
ing techniques, graph mining technology is an ideal tool for
dealing with complex data structures because of its complex
data object relationships and rich data presentation. Knowl-
edge and information acquisition through graph mining has
been widely used in various fields, such as social sciences [4,
5], bioinformatics [6, 7], and cheminformatics [8, 9]. Specif-
ically, graph mining can be used to discover structure-
content relationships in social media data, to mine
community-dense subgraphs, to extract network motifs or
significant subgraphs in protein-protein or gene interaction
networks, to discover 3D motifs in protein structures or
chemical compounds, etc.

Graph Learning. As a typical representative of non-
Euclidean spatial data, graphs can characterize the relation-
ships between everything. However, due to the irregularity
of graph data, existing deep learning models [10] (which
deal with Euclidean Space [11] data and are based on the
nature of regularized data) cannot be directly applied to
graph structured data. For this reason, graph learning (such
as graph neural network (GNN) [12] and graph embedding
[13]) was developed. Graph neural networks establish a deep
learning framework for non-Euclidean spatial data, and
compared to traditional network representation learning, it
is able to perform deeper information aggregation opera-
tions on graph structures than traditional network represen-
tation learning models. Currently, graph neural networks are
capable of solving many deep learning tasks, link prediction
[14], graph clustering [15], and recommendation systems
[16]

The fact that these three classes of graph applications are
so widely used motivates us to investigate them. Due to the
characteristics of sparsity, power-law distribution, and
small-world structure of the graph, graph computing brings
a series of challenges to modern computer systems based on
control flow architecture, such as low execution efficiency of
parallel flow, low locality of memory access, and poor scal-
ability of lock synchronization. Therefore, graph computing
has recently been a popular topic for study in both academia
and industry.

In order to solve many problems of large-scale graph
computing, in recent years, researchers have carried out
extensive basic research and key technology research on
software systems implementation, which mainly focuses on
improvements by software technologies on existing
general-purpose hardware platforms, such as single-
machine platform and distributed platform. However, there
is a significant gap between the general-purpose hardware
and the unique characteristics of graph analytics [17, 18].
Domain-specific architectures, which primarily pay atten-
tion to hardware acceleration through architecture innova-

tions, are necessary as a potential solution that may fill the
gap. We classify the domain-specific architectures’ research
into three major categories, FPGA, ASIC, and PIM, because
different hardware platforms have different considerations
for performance acceleration.

This paper will summarize the research status of graph
computing key technologies of the software systems imple-
mentation and domain-specific architectures, and then sum-
marize, compare, and analyze the latest research progress
from three aspects: basic theory, system software, and sys-
tem architecture. The remainder of this paper is structured
as follows: Section 2 explains the background of graph ter-
minology and graph accelerator architecture types. Section
3 describes software systems implementation for graph ana-
lytics. Section 4 presents domain-specific architectures for
graph analytics. Finally, Section 5 prospects the future tech-
nical challenges and research directions, and Section 6 pro-
vides a conclusion.

2. Background

2.1. Graph Terminology. A graph is a kind of data structure
made up of vertices and the edges that connect vertices.
The formula for a graph is G = ðV ; EÞ, where V stands for
the vertex set and E for the edge set. A directed edge from
vertex vi to vertex vj is represented as e = ðvi ; vjÞ. Each ver-
tex and each edge has its attribute value at the same time.
Different domain attribute values can represent different
meanings. For instance, in a social network, the attribute
value of the vertex is the popularity of the individual, and
the attribute value of the edge is expressed as the degree of
closeness between two people who are related. The graph
data structure expresses the correlation between data well,
and correlation computing is the foundation of big data
computing. By obtaining the correlation of data, useful
information can be extracted from the massive data with a
lot of noise. Graph analytics technology solves the problems
of low efficiency and high cost of association queries in tra-
ditional computing modes and fully characterizes the rela-
tionship in the problem domain, and has rich, efficient,
and agile data analysis capabilities.

2.2. Domain-Specific Architecture Types for Graph Analytics.
FPGA-Based Architecture. Field-programmable gate arrays
(FPGAs) are integrated circuits that consist of various types
of programmable resources, which enables developers to
rapidly prototype application-specific accelerators using
dedicated hardware description languages and reconfigure
these accelerators as often as needed. These programmable
resources include but not limited to lookup tables (LUTs),
registers, block RAMs (BRAMs), and DSP slices. However,
FPGAs offer reconfigurability at the expense of lowered
clock frequencies, which is about 10 × lower than that of
CPUs. Nevertheless, FPGAs have become attractive devices
for accelerating graph applications due to the following
advantages.

First, graph-application-specific operations can be elabo-
rately constructed as a pipeline to yield one result per cycle,
expressing impressive efficiency. Meanwhile, the pipeline
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duplication can be easily implemented on the FPGA,
enabling massively parallel graph processing. Furthermore,
graph data can be streamed into the pipeline and trigger
the computation instead of expensive instruction control
operations (e.g., instruction decoding) in modern CPUs
and GPUs, reducing power consumption significantly. The
random access feature of on-chip BRAMs is another repre-
sentative advantage of FPGAs, which enables random graph
data access with high throughput on FPGAs. What is more,
developers can explicitly configure the on-chip BRAMs with
the domain-specialized replacement policy, which is funda-
mentally different from the domain-agnostic cache replace-
ment strategy on CPUs, thereby exploiting locality and
reducing off-chip communications effectively. Nowadays,
FPGAs have been widely deployed in the cloud or data cen-
ters such as Microsoft Project Catapult [19] and Amazon F1
cloud [20]. The accessibility and low cost of FPGAs further
make them attractive.

The aforementioned advantages of FPGAs have attracted
a good deal of research in developing FPGA-based special-
ized architecture for accelerating graph application. To mit-
igate performance degradation caused by irregular access
characteristics of graph applications, numerous previous
studies focus on designing an efficient memory subsystem
[17, 21–28]. Some [21–23] adopt dedicated on-chip data
replacement and sophisticated graph partitioning schemes
to enhance data reuse and improve locality. Some [17, 24,
25] further alleviate the performance impact of data conflicts
occurring in the on-chip BRAM. There are also works aim-
ing to efficiently utilize the bandwidth of on-chip and off-
chip memories [26–28]. Recently, emerging 3D-stacked
memories, e.g., hybrid memory cube (HMC) [29] and
high-bandwidth memory (HBM) [30], take the place of
commodity memories to boost the power of FPGAs. Some
research efforts [31–34] try to exploit the high bandwidth
and parallelism of these new devices for accelerating graph
application. In addition, in order to support large-scale
graph applications, a number of studies construct the
multi-FPGA architecture [21, 22]. Alternatives [35–39]
employ the CPU-FPGA heterogeneous platform to handle
large graphs using two distinct design methodologies. The
first category [35, 36, 40] uses the CPU for data preprocess-
ing and task scheduling while the FPGA is responsible for
the real computation. Another category [37–39] features
CPU-FPGA coprocessing to release the performance poten-
tial of heterogeneous platforms.

ASIC-based architecture. Application specific integrated
circuit (ASIC) is an integrated circuit customized for specific
requirements. It adopts a certain process to interconnect
wirings and components (e.g., transistors, resistors, capaci-
tors, and inductors), manufacture them on one or several
small semiconductor wafers or dielectric substrates, and
then encapsulate them in a tube to become microstructures
with specific circuit functions.

Existing ASIC-based accelerators for graph applications
typically focus on elaborately constructing application-
specific computation units [41–44] and memory hierarchy
[45–47] for higher performance and energy efficiency. For
example, in the aspect of dedicated computation units, Gra-

phicionado [48] builds graph-processing-friendly pipelines
to enable efficient pipelining computations. HyGCN [49]
establishes the hybrid execution engines to alleviate irregu-
larity of the aggregation phase and exploits regularity in
the combination phase for graph convolutional neural net-
works. As for the memory hierarchy, GRAMER [50] archi-
tects a locality-aware on-chip memory hierarchy, which
can handle the substantial random accesses appearing in
graph mining applications to minimize the off-chip commu-
nications. Ozdal et al. [51] designed dedicated caches for dif-
ferent types of graph data according to the access
characteristics. In addition, recent studies aim at exposing
flexibility [51–53] and releasing productivity [51, 54, 55]
for ASIC-based graph accelerators.

PIM-Based Architecture. Processing-In-Memory (PIM)
is a promising technology that addresses the “memory wall”
challenge. The key idea is to move the compute units inside
the memory, so that the latency and energy consumption of
data movement are drastically reduced compared to the con-
ventional von Neumann architecture with a separate
computation-memory hierarchy. Existing approaches to
enable and implement PIM can fall into two categories: pro-
cessing using memory (PUM) [56–58] and processing near
memory (PNM) [59–63].

PUM enables memory chips to have the computing abil-
ity by exploiting intrinsic operational principles of the mem-
ory circuitry [64–66]. Taking resistive random access
memory (ReRAM) as an illustration, a ReRAM cell with
low read latency and high energy efficiency has an oxide
layer sandwiched between two electrodes [67] to store infor-
mation by changing the resistance across the oxide layer
(Figure 1(b)). Many ReRAM cells are organized as an area-
efficient crossbar structure to enable high parallelism and
memory capacity (Figure 1(a)). ReRAM can perform a
matrix-vector multiplication (MVM) operation [68] at one
cycle. Specifically, the information stored in the ReRAM
cells is programmed to be conductance Gi,j, where conduc-
tance is the inverses of resistance and i (j) indicates the
wordline (bitline). Digital-to-Analog-Converters (DACs)
can convert the input data to analog voltages Vi, which are
applied to the corresponding wordline. Then the current
Vi ·Gi,j passes through the cell ði, jÞ into the bitline.
Finally, output currents on the same bitline can be accumu-
lated via I j =∑iVi ·Gi,j, and Analog-to-Digital-Converters
(ADCs) further convert the results to digital values. Previous
studies mainly focus on addressing limited parallelism
[69–71] and reducing superfluous ineffectual computations
[72–75] for graph applications.

PNM integrates computational logics (e.g., simple in-
order cores) inside or nearby the memory. As a represen-
tative, Hybrid Memory Cube (HMC) has a logic layer
underneath 3D-stacked memories through-silicon vias
(TSVs) [76] as shown in Figure 2. Multiple layers of memory
and the bottom logic layer are connected together via TSVs,
which offer significantly more internal memory bandwidth
than the traditional memory channel. Each memory layer
contains multiple banks. A vertically connected stack of sev-
eral banks from different memory layers is called as a vault
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[77]. HMC can benefit from multiple DRAM channels for
each vault, exhibiting significantly high memory-level
parallelism. Plenty of PNM-based accelerators for graph
applications are proposed to exploit the massive parallelism
[78–80] and reduce communications [81–83].

3. Software Systems Implementation for
Graph Analytics

3.1. Software Graph Processing Systems. Many software sys-
tems for graph processing are explored on modern
general-purpose hardware platforms, and can be classified
into two main categories: single-machine graph processing
systems and distributed graph processing systems. Accord-
ing to whether the graph data can be stored in memory dur-
ing processing, these systems can be divided into in-memory
graph processing systems and out-of-core graph processing
systems. Table 1 summarizes the typical software systems
for graph processing. There are four programming models,
namely vertex-centric (V), edge-centric (E), path-centric
(P), data-centric (D), and two execution models, namely,
synchronous (Sync), and asynchronous (Async).

3.1.1. Single-Machine Graph Processing Systems. Single-
machine graph processing systems can fully exploit the abil-
ity of a single machine to handle graph computation tasks
and avoid the expensive network communication overhead
in distributed systems. However, such systems are limited
by fixed hardware resources and are unable to achieve good
scalability, and processing time is typically proportional to
the size of the graph data. There are two types of single-
machine graph processing systems: in-memory graph pro-
cessing systems for high-end multicore, large-memory
servers, and out-of-core graph processing systems for com-
mercial PCs. The former puts graph data completely into
memory during processing, while the latter usually uses disk
to store graph data and adopts a certain partitioning strategy
to process it in chunks.

Single-machine in-memory graph processing systems
often have multiple cores and support very large memory
of more than 1TB, allowing them to handle graph data with
hundreds of billions of edges. Compared to single out-of-
core graph processing systems, single in-memory graph pro-
cessing systems keep graph data in memory and can signif-
icantly minimize disk I/O overhead. However, single
shared memory systems can only scale by increasing the
number of CPUs or expanding the memory size.

Ligra [84] is a lightweight shared memory-based single-
machine graph processing system, which provides program-
ming abstraction based on edgeMap function, vertexMap
function, and vertexSubset type, simplifying the writing of
graph processing algorithms. The key idea of Ligra is to
accelerate the convergence of the graph algorithms by
dynamically switching between the pull and push computa-
tion modes during execution based on the size and out-
degree of the active vertex subset, but Ligra lacks support
for scheduling policies.

The key idea of Galois [85] single-machine graph process-
ing system is to fully exploit the benefits of autonomous
scheduling in a data-driven computing mode. Galois designs
a machine topology-aware task scheduler and a priority task
scheduler with corresponding extension libraries and runtime
systems. Galois’ flexible and comprehensive programming
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interfaces allow users to build complicated algorithms as eas-
ily as feasible.

Polymer [86] is a multicore processing-oriented nonuni-
form memory access (NUMA) aware graph processing sys-
tem. The system performs differential allocation of
topology data, application data, and system variable runtime
state according to the access pattern to reduce remote mem-
ory access while converting random remote access to
sequential remote access with lightweight vertex replication
across NUMA nodes. Furthermore, Polymer further builds
a hierarchical barrier to improve parallelism and locality
and uses edge-based balanced partitioning strategies and
adaptive data structures to improve load balancing.

HotGraph [87] presents an asynchronous graph process-
ing technique based on core graphs to fully utilize the cas-
cade effect and accelerate the convergence of asynchronous
graph algorithms. It contains core graph vertices in the
graph, or hot vertices, and the paths between them in a data
structure called the core graph. Then, HotGraph gives this
core graph a high processing priority, so that the state push
in the core graph happens faster. On this basis, in order to
speed up the local convergence speed of each graph block,
HotGraph adopts an alternate data processing strategy to
process each graph block.

CGraph [88, 89] proposes an association-aware execu-
tion model and a scheduling algorithm based on core
subgraphs, which enables concurrent iterative graph pro-
cessing jobs to effectively share graph structure data and
access in cache/memory and effectively reduce the memory
access/computation ratio of concurrent iterative graph pro-
cessing jobs so as to efficiently execute concurrent iterative
graph processing jobs and enable the system to obtain higher
throughput.

For dynamic graph processing, incremental computation
techniques are usually used. GraphBolt [90] incrementally
corrects the difference between the original graph result
and the real graph for each round by recording the vertex
state of one round during the iterative process and combin-
ing it with the dependencies on the graph. The vertex state
correction, through dependencies, enables GraphBolt to
reduce a large number of redundant computations. How-
ever, its need to record each round of vertex state for incre-
mental computation also brings a huge storage overhead.

DZiG [91] notes that many incremental graph process-
ing systems are designed with change-driven models in
order to reduce redundant computations, which can lead
to sparsity in iterative computations. DZiG adapts to graph
changes through a sparsity-aware incremental processing

Table 1: Overview of typical software systems for graph processing. (IM, PM, EM, DG represent in-memory, programming model,
execution model, dynamic graph, respectively, and single machine default to CPU).

Year System Architecture IM PM EM DG Main features

2013 Ligra [84] Single machine Yes V Sync No Hybrid computing

2013 Galois [85] Single machine Yes V Async No Priority scheduler

2015 Polymer [86] Single machine Yes V Sync No NUMA-aware processing

2017 HotGraph [87] Single machine Yes V Async No Hot graph

2018 CGraph [88, 89] Single machine Yes V Sync No Correlations-aware

2019 GraphBolt [90] Single machine Yes V Sync Yes Incremental computation

2021 DZiG [91] Single machine Yes V Sync Yes DelZero-aware processing

2021 Tripoline [92] Single machine Yes V Async Yes Triangle inequality

2016 Gunrock [93] Single GPU Yes D Sync No Data-centric PM

2019 DiGraph [94] Multiple GPUs Yes V Async No Dependency-aware processing

2020 Scaph [95] Single GPU Yes V Sync No Value-driven scheduling

2012 GraphChi [96] Single machine No V Async No Parallel sliding windows

2013 X-Stream [97] Single machine No E Sync No Edge-centric PM

2015 GridGraph [98] Single machine No E Async No Two-level graph partition

2016 PathGraph [99] Single machine No P Async No Path-centric PM

2017 Mosaic [100] Single machine No V/E Sync No Hilbert-ordered tiles

2019 GraphM [101] Single machine No E Sync No Regularizing traversal path

2022 EGraph [102] Single GPU No E Sync Yes LPS execution model

2010 Pregel [103] Distributed CPUs Yes V Sync No Vertex-centric PM

2012 GraphLab [104] Distributed CPUs Yes V Both No Asynchronous execution

2012 PowerGraph [105] Distributed CPUs Yes V Both No GAS model

2015 PowerSwitch [106] Distributed CPUs Yes V Both No Hybrid computing model

2014 Maiter [107] Distributed CPUs Yes V Async No DAIC theory

2017 KickStarter [108] Distributed CPUs Yes V Async Yes Trimmed approximations

2021 Ingress [109] Distributed CPUs Yes V Sync Yes Flexible memorization

2015 Chaos [110] Distributed CPUs No E Sync No Scale-out graph processing
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method, while being able to adaptively switch incremental
strategies based on the sparsity of the computation. Com-
pared to GraphBolt, DZiG further improves the perfor-
mance and increases the scale that can handle graph
changes simultaneously.

Tripoline [92] points out that existing incremental graph
processing systems often rely on a priori knowledge in terms
of queries. For instance, KickStarter’s [108] incremental
queries rely on the source points not changing each time
when they are queried, otherwise the dependency trees they
maintain would be useless. Tripoline is able to reuse the lat-
ter to speed up the former by establishing strict constraints
between the evaluation of one graph query and the result
of another graph query, which will not depend on any prior
knowledge. GPUs have many processing units and abundant
bandwidth resources, which can provide a higher parallel
computing capability than CPUs, and can efficiently support
large-scale graph vertex traversal and update. High concur-
rency is a characteristic of graph processing. Both the
vertex-centric and edge-centric graph computing program-
ming models hide a large amount of data parallel semantics,
enabling GPU parallel acceleration. Graph processing is also
a data-intensive application, and the bandwidth of hundreds
of GB/S provided by GPUs has obvious advantages over
CPUs. More graph data can be transmitted per unit time,
and the parallel advantages of GPUs can be fully utilized
for acceleration. However, GPU-based graph processing
acceleration technologies face challenges such as unbalanced
workload, low bandwidth utilization, and insufficient mem-
ory capacity.

Gunrock [93] designs a general accelerated library for
GPU-based graph processing, and proposes a data-centric
programming abstraction that combines high-performance
GPU computing primitives with optimization strategies for
high-level programming models, enabling fast implementa-
tion of high-performance graph primitives on GPUs. Gun-
rock employs a hybrid scheduling strategy to achieve load
balancing of computational tasks across different granular-
ities. At the same time, Gunrock implements a hybrid data
structure of CSR and edge list to improve the efficiency of
aggregated accesses and reduce the extra overhead caused
by random accesses.

DiGraph [94] proposes a path-based multi-GPU acceler-
ation method, which represents a directed graph as a set of
disjoint directed paths and treats the paths as the basic par-
allel processing units, enabling efficient propagation of ver-
tex states along the paths under GPU acceleration, thus
speeding up convergence. DiGraph also includes a path-
dependent perception scheduling strategy, which processes
the paths according to the topological order of the path-
dependent graph, effectively reducing the redundant pro-
cessing of graph data and accelerating the convergence of
the graph algorithms.

For faster iterative graph processing on GPUs, Asyn-
Graph [111] proposes a graph structure-aware asynchro-
nous processing method and a forward-backward path
processing mechanism to maximize data parallelism for
graph processing on GPUs. The former can efficiently per-
form parallel state propagation for most vertices on the

GPU and obtain higher GPU utilization by efficiently pro-
cessing paths between important graph vertices; the latter
can process graph vertices on each path asynchronously,
which in turn further increases the speed of state propaga-
tion along the path while ensuring lower data access costs.

Scaph [95] is a value-driven scalable GPU-accelerated
graph processing system that can effectively improve the uti-
lization of GPU bandwidth by differentially scheduling the
processing based on the values that partition the subgraphs.
Due to Scaph’s excellent scalability, its performance advan-
tage can be progressively increased as computational
resources become more readily available.

Subway [112] proposes a fast subgraph generation algo-
rithm, which generates subgraphs of the graph data to be
processed quickly by GPU acceleration before each iteration,
and then loads the subgraphs into the GPU for processing,
thus effectively reducing the data transfer overhead between
the CPU and GPU. Additionally, Subway reduces the num-
ber of data transfers by delaying the synchronization
between the subgraph data in the GPU memory and the
graph data in the CPU memory, which further improves
the graph processing performance.

With the rapid expansion of graph data size, many
single-machine graph processing systems use external mem-
ory, such as disks, to store very large scale graph data. The I/
O bandwidth limitation of external memory such as disks
has become the performance bottleneck of single-machine
out-of-core graph processing systems, and it is a challenge
to reduce random accesses during graph computing.

GraphChi [96] is the first disk-based graph processing
system that proposes the Parallel Sliding Windows (PSW)
technique to optimize the access to disk during graph com-
putation. GraphChi preprocesses edge data into shards by
a specific graph partitioning strategy, and then the PSW
asynchronous computation model is used to process the
shards, thus effectively reducing random disk accesses and
improving system performance.

X-Stream [97] proposes an edge-centric computation
idea to process edges in external memory or in-memory in
a streaming manner to improve the continuity of access to
memory, thus making full use of the bandwidth of storage
devices to improve performance. X-Stream designs a stream-
ing partition mechanism to divide graph data, and then uses
an edge-centric scatter-gather computing model to stream
the graph partitions, maximizing throughput through
streaming access to edges.

GridGraph [98] proposes a two-level graph partitioning
strategy, which divides the graph data finely in the prepro-
cessing stage, and then further divides the edge data dynam-
ically at runtime to improve memory access efficiency. At
the same time, GridGraph uses dual sliding window technol-
ogy to stream edge data to reduce the I/O required for com-
putation. In addition, GridGraph also provides a flexible and
selective scheduling strategy, which can further reduce graph
data I/O.

PathGraph [99] proposes a path-centric graph computing
model, which can effectively improve the locality of memory
and disk when executing iterative graph algorithms on
large-scale graphs. Moreover, the path-centric compressed
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storage structure further improves the continuity of data
access, thereby accelerating the execution of graph computing
tasks.

Mosaic [100] is a heterogeneous graph processing sys-
tem that scales horizontally and vertically through a hybrid
execution model. The main processor is responsible for
vertex-centric operations on the global graph and the copro-
cessor is responsible for completing edge-centric operations
on the local graph, capable of supporting graph computing
on trillions of edges.

LUMOS [113] proposes a dependency-driven graph pro-
cessing technique that actively propagates values between
iterations through unordered execution while providing syn-
chronous processing guarantees. The cross-iteration value
propagation mechanism of LUMOS efficiently identifies
future dependencies and can actively compute the values of
dependencies without sacrificing disk locality, which can
diminish the number of graph data that needs to be loaded
in subsequent iterations and speed up graph processing.

In order to optimize the execution efficiency of graph
computing tasks, DGraph [114] scales each strongly con-
nected component of the graph into abstract graph vertices
according to the dependencies between graph vertices. The
graph is transformed into an abstract directed acyclic graph,
and then the directed acyclic graph is divided into multiple
layers so that there is no interdependence between the
strongly connected components of each layer. Then, each
strongly connected component is processed in parallel
according to the level number so that a high number of
graph vertices only need to be processed a few times to con-
verge, greatly reducing the data access costs and redundant
update times.

Wonderland [115] is a graph processing system based on
graph abstraction, which can efficiently extract graph
abstractions from raw graph data under specified memory
constraints, and accelerate disjoint graph partitioning on
disk through graph abstraction interval message propagation
to improve graph processing performance. Wonderland also
includes a priority scheduling strategy based on graph
abstraction, which can effectively accelerate the convergence
of graph algorithms.

Congra [116] and CongraPlus [117] explored the sched-
uling problem of concurrent graph computing requests, and
designed a set of memory bandwidth-efficient single-
machine graph computing scheduling strategies on the
shared memory architecture. CongraPlus graph computa-
tion requests are implemented based on the Ligra frame-
work. This technology obtains information about graph
processing requests through offline sampling. In the running
phase, CongraPlus first distributes requests to the local
scheduler evenly through global request allocation, and then
uses an iterative ascent algorithm to calculate the optimal
number of threads required for each request. During this
process, the system ensures that concurrently executed
requests do not over-compete for memory bandwidth and
uses the LookAhead algorithm to provide better perfor-
mance for heavily loaded requests.

GraphM [101] is an effective storage system which can
be easily embedded into the existing graph computing sys-

tem and make full use of the data access similarity of concur-
rent graph computing tasks, allowing the graph structure
data to be regularly flowed into memory/cache and shared
by concurrent graph computing tasks, improving the
throughput of concurrent graph computing tasks by reduc-
ing data access and storage overhead. Subsequently,
GraphSO [118] adopts a fine-grained graph data manage-
ment mechanism and uses an adaptive data repartitioning
strategy and a structure-aware graph data caching mecha-
nism at runtime to further reduce redundant I/O for concur-
rent graph computing tasks overhead and improve system
throughput.

EGraph [102] is a GPU-based dynamic graph processing
system that can be integrated into existing GPU out-of-core
static graph processing systems and efficiently utilizes GPU
resources to support concurrent processing of different
snapshots of dynamic graphs. Unlike existing approaches,
EGraph proposes an efficient Loading-Processing-Switching
(LPS) execution model. It achieves efficient execution of tem-
poral iterative graph processing tasks by making full use of
the data access similarity between temporal iterative graph
processing tasks to effectively reduce the CPU-GPU data
transfer overhead and ensure higher GPU utilization.

3.1.2. Distributed Graph Processing Systems. A distributed
graph computing system consists of multiple computing
nodes, each of which has its own memory and external
memory. Therefore, compared to single-machine graph
computing systems, distributed graph processing systems
are less limited by hardware in terms of scalability. However,
in a distributed graph processing system, graph data is dis-
tributed to multiple nodes for processing. Therefore, the
data partitioning mechanism has a great influence on the
performance of the distributed graph processing system,
and it is a challenge to design an appropriate data partition-
ing strategy. Meanwhile, the communication between com-
puting nodes becomes a performance bottleneck, and the
system’s overall performance and the scale of data process-
ing are limited by the network bandwidth.

Most distributed graph processing systems are distrib-
uted in-memory graph processing systems, in which all
graph data is completely loaded into memory for processing.

Pregel [103] is one of the earliest distributed in-memory
graph processing systems, which uses the batch synchronous
parallel (BSP) model for processing graph data and proposes
a vertex-centric computing framework that represents the
graph algorithm as a series of iterations, where each vertex
modifies its own state and the state of its output edges based
on the messages it has received from previous iteration and
sends the messages to other vertices. The vertex-centric
computing framework is extremely expressive and can
implement a large variety of graph algorithms.

Many distributed in-memory graph processing systems
are extended with Pregel [103]. GraphLab [104] supports
asynchronous execution of graph algorithms while ensuring
data consistency, and this asynchronous model tends to have
faster convergence and lower synchronization costs than
synchronous models. However, GraphLab still suffers from
vertex degree skew. GraphX [119] is a graph processing
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framework on Apache Spark that combines the advantages
of a dedicated graph processing system with those of a dis-
tributed data streaming system to provide a set of composa-
ble graph abstractions on a distributed data streaming
system to implement and execute iterative graph algorithms
efficiently.

To address the workload imbalance and other problems
associated with power-law graphs, PowerGraph [105] adopts
the Gather-Apply-Scatter (GAS) computation model to
decompose the vertex program into multiple stages, allowing
the computation to be more evenly distributed across the
cluster. At the same time, vertex partitioning and a series
of fast heuristics are employed to reduce the storage and
communication overhead of power-law graphs on distrib-
uted clusters. PowerGraph can support the BSP computation
model of Pregel [103] and the asynchronous computation
model of GraphLab [104].

PowerSwitch [106] and PowerLyra [120] are designed
based on the distributed graph computing system Power-
graph [105]. Power-Switch proposes a hybrid computing
model, which can automatically switch between asynchro-
nous and synchronous execution modes during parallel
graph computing processing to obtain the best performance.
PowerLyra employs different graph division strategies and
graph computation schemes for high-degree and low-
degree vertices to improve system efficiency.

Gemini [121] is a computation-centric graph processing
system, which applies the hybrid Push/Pull computing para-
digm in distributed scenarios, and adopts a chunk-based
graph partitioning strategy that exhibits good data locality
at multiple levels of parallelism. Gemini builds a low-cost
distributed design on the basis of optimizing the computing
efficiency of a single node, which effectively improves the
utilization of system resources.

Grape [122] is a graph computing system that can auto-
matically convert serial algorithms into parallel algorithms.
Its main benefit is that serial algorithms’ logic does not need
to be changed. This significantly lessens the challenge of par-
allel programming in graph computing since it can be done
in parallel by putting it into Grape as a whole. In addition,
since Grape divides vertices into a specified number of frag-
ments, the vertices on each fragment can adopt a serial algo-
rithm, and then parallelize the algorithm to support data
partition parallelism so that optimization strategies devel-
oped for serial algorithms can be implemented in Grape.
These optimizations are difficult to use directly in ordinary
vertex-centric models.

To speed the convergence of graph computing tasks,
Maiter [107] proposed the difference-based cumulative iter-
ative computation (DAIC) theory, where each vertex only
propagates and accumulates the updated value instead of
the full value of the vertex, which can be executed asyn-
chronously and efficiently. The graph iterative algorithm
uses less iterative computation overhead to reach a conver-
gent state, and rigorously proves the correctness of the
DAIC computation.

To further accelerate asynchronous graph processing on
distributed platforms, FBSGraph [123] proposes an efficient
forward and backward scanning execution approach, which

can greatly enhance the state propagation efficiency of asyn-
chronous graph processing. FBSGraph also includes a static
prioritization scheme, which can effectively reduce the com-
munication overhead of asynchronous graph processing on
distributed platforms, and further improve the convergence
speed of asynchronous graph algorithms.

PowerLog [124] further explores the theoretical under-
pinnings of whether monotonic or nonmonotonic programs
can be performed correctly asynchronously and incremen-
tally and develops a conditional verification tool to automat-
ically check whether the program satisfies this condition.
Based on this, PowerLog designs a unified distributed syn-
chronous and asynchronous engine. When executing recur-
sive aggregation programs, it realizes adaptive asynchronous
and synchronous execution modes by dynamically adjusting
the frequency of message propagation to minimize program
execution time. PowerLog’s analytical approach is the basis
of incremental computing for many graph processing and
graph neural networks.

For efficient processing of streaming graphs, Kineograph
[125] designs a distributed in-memory graph storage system
to generate a reliable and consistent series of snapshots at
regular intervals and uses a graph computation engine that
supports incremental iterative propagation to process the
snapshots to obtain real-time computation results. The core
idea of real-time computation results is to interleave iterative
computation and batch updates of graphs. Iterative compu-
tation maintains the intermediate computation results of the
most recent version of the graph, and when a query is
received, iterative computation is performed directly from
the intermediate results to obtain the exact computation
results of the current version of the graph after the batch
update.

Tornado [126] optimizes real-time iterative graph pro-
cessing on distributed platforms. It proposes an approxima-
tion method to enhance the timeliness of graph processing
and designs a novel bounded asynchronous iterative pro-
cessing model that can ensure the correctness of graph pro-
cessing results and achieve efficient fine-grained updates.

During dynamic graph processing, changes in graph
structure brought about by edge deletion may lead to inval-
idation or performance degradation of intermediate results
of graph computation. For this reason, KickStarter [108]
proposes a runtime technique to address the challenges
posed by edge deletion. The key idea is to precisely identify
the vertices affected by edge deletion based on inter-vertex
dependencies and adjust the state values of these vertices
to an estimate close to the convergence value. This runtime
technique of tracking and adjusting vertex state values
ensures that the computation yields correct results and
accelerates the convergence of the graph algorithm.

Aiming at incremental computing for large-scale
dynamic graphs, Ingress [109] can automatically realize the
incrementalization of vertex-centric graph algorithms, and
is equipped with four different computing state memory
strategies. The strategy applies to the sufficient conditions
of the graph algorithm, and the system can automatically
select the optimal memory strategy according to the algo-
rithm logic specified by the user.
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The distributed out-of-core graph processing system
expands the single-machine out-of-core graph processing
system into a distributed cluster, thereby further expanding
the scale of graph data. Based on X-Stream [97], Chaos
[110] is currently the only distributed out-of-core graph pro-
cessing system, and extends single-machine out-of-memory
graph computation to multiple machines. It is composed of
computing subsystems. Each machine has a storage subsys-
tem as a storage engine, which provides vertices, edges,
and updates for the computation subsystem. Chaos realizes
parallel execution and sequential storage access by adjusting
the X-Stream stream partition and achieves multimachine
load balancing through random work stealing technology.

3.2. Software Graph Mining Systems. Recently, several soft-
ware systems have been proposed to solve the graph mining
problem. They search for subgraphs that satisfy the condi-
tions of the algorithm in the input graph G. The process of
finding subgraphs can be modeled with a search tree where
each node represents a subgraph, and the subgraphs at the
k+1 level are expanded from the subgraphs at the k level.
Based on the model, these systems can be classified by pro-
gramming model into two main types: pattern − oblivious
and pattern − aware, also called embedding − centric and
set − centric. They also adopt a variety of different tech-
niques, such as graph-traversal strategy and multipattern
optimization, to improve the performance of graph mining

problems. Table 2 summarizes the software systems for
graph mining.

3.2.1. Programming Model

(1) Pattern-Oblivious Programming Model. Pattern-oblivious
systems [127–131, 133, 134] adopt the embedding-centric
approach to solve the graph mining problem. They establish
a search tree to represent the partial embeddings (nonleaf
nodes) and final embeddings (leaf nodes). For the partial
embeddings, some pruning techniques are employed to pre-
vent duplication and unnecessary exploration. For the final
embeddings, expensive isomorphic tests are applied to check
if they are isomorphic to the pattern. Arabesque [127], the
first distributed graph mining system, uses BFS to explore
the search tree based on the BSP model, and proposes the
coordination-free exploration strategy to avoid redundant
exploration. However, Arabesque suffers from high memory
and IO costs and synchronization overhead.

Memory and IO costs. Although BFS exploration pro-
vides high parallelism, the number of subgraphs increases
exponentially with the pattern’s size. When the input graph
is large, keeping all subgraphs in memory is impractical, and
employs out-of-core processing, which may cause an IO bot-
tleneck. To keep CPU cores occupied while waiting for data,
G-thinker [132] maintains a pool of active tasks that can be
processed at any time. In this way, while some tasks are

Table 2: Overview of software systems for graph mining. (PA, GTS, MPO represent pattern-aware, graph-traversal strategy, multipattern
optimization, respectively).

Year System Architecture PA GTS MPO Main features

2015 Arabesque [127] Distributed CPUs No BFS No Embedding-centric model

2016 ScaleMine [128] Distributed CPUs No BFS No Scalable and parallel

2018 G-Miner [129] Distributed CPUs No BFS No Task pipeline

2018 RStream [130] Single machine No BFS No GRAS model

2019 Fractal [131] Distributed CPUs No DFS No DFS exploration

2020 G-thinker [132] Distributed CPUs No BFS No
Vertex caching
Task scheduling

2020 Pangolin [133]
Single machine
(CPU & GPU)

No BFS No Efficient and flexible

2021 aDFS [134] Distributed CPUs No Hybrid No Almost-DFS exploration

2019 AutoMine [135] Single machine Yes DFS Yes
Compilation techniques

Matching order

2021 GraphZero [136] Single machine Yes DFS Yes Symmetry order

2020 Peregrine [137] Single machine Yes DFS No
Matching order
Symmetry order

2020 GraphPi [138] Distributed CPUs Yes DFS No Optimal order

2020 DwarvesGraph [139] Single machine Yes DFS No Pattern decomposition

2021 Kudu [140] Distributed CPUs Yes Hybrid No
Extendable embedding
BFS-DFS exploration

2021 Sandslash [141] Single machine Yes DFS No Two-level optimizations

2021 SumPA [142] Single machine Yes DFS Yes Pattern abstraction

2022 G2Miner [143] Multiple GPUs Yes Hybrid Yes
Input-aware

Architecture-aware
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waiting for data, other tasks can continue their computa-
tions. Furthermore, it implements a novel vertex cache to
support highly concurrent vertex accesses to minimize
redundant requests. To reduce memory consumption, Frac-
tal [131] adopts the DFS method to enumerate embeddings.

Synchronization overhead. The BSP model requires syn-
chronization between supersteps, which leads to the strag-
gler problem, lowering hardware utilization of distributed
graph mining systems. To remove the synchronization bar-
rier, G-Miner [129] proposes a novel task-pipeline design
which can asynchronously process CPU computation, net-
work communication, and disk I/O.

ScaleMine [128] introduces a novel two-phase solution
to support the FSM algorithm in a single large graph with
scalability and parallelism. In the first phase, it adopts an
approximate approach to efficiently identify subgraphs with
high probability. In the next phase, the exact solution is
computed by utilizing the collected information from the
first phase to ensure excellent load balancing and improve
parallelism.

To overcome the drawbacks of conventional distributed
mining systems, such as large startup and communication
overhead and underutilization of CPU resources, RStream
[130] develops the first single-machine, disk-based, out-of-
core graph mining system. Based on relational algebra,
RStream provides a rich programming model (named
GRAS) to enable a variety of graph mining algorithms and
efficient implementations of relational operations (particu-
larly join) for graphs.

Existing mining systems, such as Arabesque and
RStream, have limited performance because they are mainly
focused on generality rather than application-specific cus-
tomization and implementations of parallel operations and
data structures. To solve the issues, Pangolin [133] provides
high-level abstractions for the processing of graph mining
on CPU and GPU and enables application-specific customi-
zation. Besides, efficient parallel operations and data struc-
tures are designed to improve hardware utilization.

(2) Pattern-Aware Programming Model. Existing pattern-
oblivious graph mining systems made a lot of effort to solve
several significant problems and achieved remarkable per-
formance improvements. However, there are still issues with
the costly overhead of subgraph isomorphism tests and
pruning search space. To address the issues, the pattern-
aware solution [135–138] analyzes the structure of the pat-
tern and generates a matching order [137] and a symmetry
order [136] to eliminate isomorphism tests and repetitive
enumeration. The pattern-aware algorithm for mining a
tailed triangle pattern with four vertices is shown in Figure 3.

Matching Order. Matching order is the search order of
vertices in the pattern when performing graph mining. For
example, in Figure 3, a matching order of the tailed triangle
pattern is fu0, u1, u2, u3g, indicating that ui is ancestor of uj

and searches prior to uj only when i > j. The yellow colored
subgraphs in Figure 3 can be pruned by the matching order,
because the input graph does not contain the vertex that the
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Figure 3: A four-level subgraph search tree for pattern-aware graph mining algorithm.
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matching order wants to explore in the next step. For exam-
ple, the subgraph fu0, u1g = f4, 1g expends the next vertex
u2 of the pattern which is a common neighbor of u0 and
u1. Since the intersection set of Nð4Þ and Nð1Þ in the input
graph is empty, the subgraph f4, 1g has no branches that
meet the matching order and can be pruned. More impor-
tantly, isomorphism tests can be avoided using matching
order, because the final embeddings always match pattern.

Symmetry Order. Although employing matching order
can eliminate isomorphism tests and prune search space, a
certain subgraph can be explored multiple times due to the
symmetry of vertices in the pattern. As shown in Figure 3,
u0 and u1 of the pattern are symmetric, and the subgraphs
f2, 3g and f3, 2g are identical subgraphs which also called
automorphisms. To eliminate duplication of enumerating
these embeddings, symmetry breaking method establishes a
symmetry order among the vertices of the pattern. For
instance, in Figure 3, the symmetry order u0 > u1 is
employed to prune the search space and ensure uniqueness.
In particular, the grey colored subgraphs in Figure 3 such as
the subgraph f2, 3g, which is automorphic to the subgraph
f3, 2g, are pruned by the restriction of u0 > u1.

Optimal order. Previous pattern-aware systems adopted
the matching order and symmetry order to avoid isomor-
phism tests and redundant enumeration. However, different
matching orders and symmetry orders have an important
influence on the performance of the graph mining system.
To address the problem, GraphPi [138] first designs algo-
rithms to generate multiple sets of matching order and
symmetry order. Then, it discovers the optimal combina-
tion of matching order and symmetry order based on a pre-
cise performance prediction model. Furthermore, GraphPi
leverages the technique of Inclusion-Exclusion Principle
(IEP) to optimize the algorithms that just count the embed-
dings’ number.

The execution time of embedding enumeration increases
dramatically as the pattern size grows. To address the chal-
lenge, DwarvesGraph [139] develops a high-performance
system using pattern decomposition techniques, which
break down a large pattern into a number of smaller subpat-
terns, and then compute each of them separately. To support
various applications, DwarvesGraph introduces a novel
partial-embedding-centric programming model. To decrease
memory consumption and random access, DwarvesGraph
proposes an efficient on-the-fly aggregation of subpatterns
embeddings. DwarvesGraph also designs a compiler that
employs conventional and loop rewriting optimization and
a novel lightweight cost model to estimate the performance
of an algorithm implementation candidate.

Sandslash [141] provides a two-level (high- and low-
level) programming model and corresponding optimiza-
tions, while earlier systems only focused on one level (i.e.
either high-level [135, 137] or low-level [130, 133]). The
high-level programming interface provides effective search
strategies, data representations, and high-level optimizations
such as matching order. The low-level programming inter-
face allows the programmers to express algorithm-specific
optimizations. Sandslash also flexibly explores combinations
of optimizations to enhance performance.

3.2.2. Graph-Traversal Strategy. Exploration of the search
tree generally follows one of two typical graph-traversal
strategies: BFS or DFS, but different graph-traversal strate-
gies have different parallelism and memory consumption.
BFS explores the search tree level by level and maintains a
list of intermediate subgraphs at each level that can be proc-
essed in parallel. Although BFS enables tremendous parallel-
ism, it suffers from memory consumption due to the size of
intermediate subgraphs grows exponentially. DFS reduces
the size of intermediate subgraphs, but it is difficult to paral-
lelize because of the data dependency, and has poor locality
because of irregular memory access. To take advantage of
the best of both strategies, many systems [134, 140, 143]
employ a DFS-BFS hybrid strategy.

aDFS [134] proposes an almost DFS graph exploration
strategy with a high degree of parallelism and constrained
runtime memory consumption. In particular, threads in
aDFS mainly prioritize DFS exploration and switch to BFS
when waiting for the required data (e.g., edges on a remote
machine) or when the exploration reveals low parallelism
(e.g., a few intermediate subgraphs) that the runtime can
identify.

The task granularity and execution schedule influence
the efficiency of a distributed graph mining system with
partitioned graph. To reduce task granularity and enable
efficient scheduling, Kudu [140] proposes a well-defined
abstraction of extendable embedding which has high
expression for graph mining algorithms and enables fine-
grained task scheduling and a BFS-DFS hybrid exploring
approach which produces appropriate concurrent tasks
with limited memory consumption, respectively. Specifi-
cally, the BFS-DFS hybrid exploration adopts DFS with a
chunk granularity.

For problems that use domain support, such as FSM, G2

Miner [143] proposes a bounded BFS search to fully utilize
the GPU. It initially employs BFS search to generate massive
parallelism, and then partitions the intermediate subgraphs
into blocks, each of which can reside in memory when the
intermediate subgraphs cannot fit in memory. After that,
the subgraphs can be processed block by block. For the load-
ing imbalance of DFS, G2 Miner employs edge parallelism,
which maps the subtree rooted at each edge at level 1 of
the search tree to one task, instead of vertex parallelism
(explanation similar to edge parallelism) to reduce task gran-
ularity and provide more parallelism.

3.2.3. Multipattern Optimization. Unlike a single-pattern
problem, which only mines one single pattern at a time, a
multipattern problem finds multiple patterns simulta-
neously. Running multipattern problems could result in
redundant computations [142] and low hardware utilization
[143]. To overcome these issues, graph mining systems such
as AutoMine [135], G2Miner [143], and SumPA [142] pro-
pose a variety of optimizations, the key insight of which is
to merge multiple patterns that share the same subpattern
to enjoy sharing.

AutoMine [135] first generates a schedule for each pat-
tern, which is a sequence of set operations, and then com-
bined those schedules to form the merged schedule.
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Specifically, AutoMine analyzes prefixes of schedules, and
overlapped prefixes can be shared to avoid repetitive enu-
meration and contribute to data reuse. The common search
paths of schedules first begin to converge, and then diverge
at some level k where the paths differ.

Unfortunately, the sharing the prefix technique in Auto-
Mine only eliminates a small proportion of redundant com-
putations, since the matching order must be the same even
though prefixes of schedules construct the same subgraphs.
SumPA [142] presents a pattern abstraction technique based
on pattern similarity to guide pattern mining and eliminate
(totally and partially) redundant computations. Specifically,
SumPA proposes a redundancy criterion called Shared Con-
nected Subpattern (SCS) to characterize redundant compu-
tation. According to the SCS similarity, it extracts a few
sample abstract patterns from numerous complex patterns.

G2Miner [143] employs a kernel fission technique to
improve hardware utilization of mining multipatterns
simultaneously on GPU. G2Miner analyses multiple patterns
to identify those patterns that share the same subpattern,
and then they can share the same workflow by merging into
the same CUDA kernel. In contrast, G2Miner generates dis-
tinct kernels for those patterns that do not share the same
subpatterns.

3.3. Software Graph Learning Systems. As one of the most
popular research directions in the field of artificial intelli-
gence in recent years, graph neural network has produced
a large number of different algorithms. Many enterprises
and research teams have carried out research and develop-
ment work on the framework and extension library of
graph-oriented neural network based on a common plat-
form. Because graph neural network applications and tradi-

tional neural network applications have similarities and
differences in many aspects of implementation methods,
many existing works are expanded based on the mature neu-
ral network frameworks, such as PyTorch and Tensorflow,
to form a new framework supporting graph neural network
applications. These frameworks and extension libraries sup-
port many different graph neural network algorithms, most
of which are open source, and it is convenient for users to
construct graph neural network flexibly. The mainstream
graph neural network framework and extension library will
be introduced in the following. Table 3 gives an overview
of typical software systems for graph learning.

3.3.1. Single-Machine Graph Neural Network System. A typ-
ical GNN system is divided into a data module and a com-
putation module. Among them, the data module is mainly
responsible for IO and preprocessing of data, and the com-
putation module is mainly responsible for training and
inference of algorithmic models. GNN systems with a single
GPU are the first to receive attention in the early develop-
ment of GNN acceleration systems. This is because in the
case of relatively small graph structure and feature vector
data, which can be stored directly in the GPU memory.
Regarding this, a large amount of work has emerged, such
as Deep Graph Learning (DGL) [144], PyTorch Geometric
(PyG) [145], GNNAdvisor [148], and G3 [147].

DGL [144] is one of the mainstream academic GNN
programming frameworks currently integrated in main-
stream neural network system architectures, such as
PyTorch, Tensorflow, and MXNet. DGL follows the Message
Passing Neural Network computational paradigm proposed
by Google [157] to accomplish GNN training and inference.
This computational paradigm contains three main

Table 3: Overview of typical software systems for graph learning.

Year System Architecture IM Baselines Main features

2019 DGL [144] Single GPU Yes PyG
Compatible with multiple backends

Message-passing parallelism

2019 PyG [145] Single GPU Yes DGL Optimization of sparse operations

2020 FeatGraph [146] Single GPU Yes Gunrock
Optimization of matrix mult

User-defined functions

2020 G3 [147] Single GPU Yes
PyTorch

TensorFlow
Using graph processing systems to support

graph-structured operations

2021 GNNAdvisor [148] Single GPU Yes
DGL, PyG

NeuGraph [149]
Profiling of GNN model and graph

2D workload management

2021 PyTorch-direct [150] Multiple GPUs No PyTorch Zero-copy programming model

2022 GNNLab [151] Multiple GPUs No DGL, PyG
Factored space sharing design

Presampling based caching policy

2021 P3 [152] Distributed GPUs Yes DGL, ROC [153]
Eliminating high communication and

partitioning overheads
Pipelined push-pull parallelism

2021 DistGNN [154] Distributed CPUs Yes DGL
Full-batch GNN training on CPUs

mitigating communication bottlenecks

2022 ByteGNN [155] Distributed CPUs Yes DGL, Euler
Two-level scheduling strategy

New graph partitioning algorithm

2022 NeutronStar [156] Distributed GPUs Yes DGL, ROC Hybrid dependency management
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propagation phases, i.e., Message Passing Phase, Reduce
Phase, and Update Phase, and its propagation formula can
be expressed by the following equation (yi′ denotes the out-
put result of vertex i; yi and yj denote the input feature,
respectively; ei,j denotes the feature of edge i to j; ∅ denotes
the aggregation formula; γΘ denotes the activation function).

yi′= γΘ yi,j∈N ið Þ∅ yi, yj, ei,j
� �� �

: ð1Þ

Message Passing Phase, i.e., for each edge on the graph,
the message to be propagated for each edge is obtained by
computing the features on the edge and the features of the
two nodes on the edge.

∅ yi, yj, ei,j
� �

: ð2Þ

Reduce Phase is mainly computed for graph vertices,
each vertex aggregates the messages on the edges by the
reduce function, where the reduce function can be summa-
tion, maximum, minimum, and mean, etc.

j∈N ið Þ: ð3Þ

Update Phase is also computed for graph vertices, and
each vertex is updated by using the update function to
update the feature vector of that vertex using the informa-
tion of the previous layer of that vertex and the aggregated
information.

γΘ for each node: ð4Þ

Moreover, DGL mainly adopts the graph-centric com-
putation model, which means that the propagation compu-
tation and vertex/edge computation on the graph are
implemented through the entire graph itself. To reduce the
memory space occupied by the message tensor, DGL also
employs message fusion techniques to merge multiple mes-
sages into a single message. However, DGL is based on the
deep learning framework PyTorch and is developed with a
graph manipulation module on top of it, which itself is less
optimized for graph manipulation during GNN execution.

Similar to DGL, PyG [145] is also a GNN framework
built on Python to model and train deep learning on
graph-structured data. However, PyG provides optimization
of sparse operations during GNN execution compared to
DGL and employs a dedicated CUDA kernel to achieve effi-
cient training. With PyG’s defined message-passing inter-
face, the user only needs to define the message and update
functions and select the corresponding aggregation function
functions, such as accumulation, maximum, and minimum,
to define new GNN models.

Compared with the mainstream frameworks such as
DGL and PyG, FeatGraph [146] is more concerned with
GNN sparse operations, which is due to the fact that the
GNN aggregation stage requires multiplying the graph fea-
ture vector matrix by the graph adjacency matrix. FeatGraph
innovatively proposes the optimization of feature vector cuts

and adopts a new graph partitioning method, which is a
super sparse operation. FeatGraph also supports User-
Definition Functions (UDFs) for different GNN models of
edge aggregation and vertex aggregation functions for differ-
ent GNN models. However, FeatGraph uses the full-batch
training method because it needs to store all data in GPU
memory.

PyTorch-direct [150] proposes a large-scale GNN frame-
work based on zero-copy. The sparse node features stored in
the CPU are the main reason for slow data loading in large-
scale GNN training. Compared with explicit copy, which is
suitable for transferring large blocks of contiguous memory,
zero-copy is more suitable for dealing with random sparse
access. However, the simple implementation of the zero-
copy accessmodel will bring the disadvantages of high latency
and low bandwidth. Aiming at the shortcomings of zero-copy,
it proposes a zero-copy programmingmodel that ensures data
access merging and alignment as much as possible.

Existing GNN acceleration systems use traditional deep
learning frameworks as backends, such as DGL and PyG,
and then add a graph engine module to support graph oper-
ations during GNN execution. However, G3 [147] believes
that the main reason for the inefficiency of the GNN execu-
tion process is the irregular traversal of graph topology and
feature vectors in graph operations, so G3 uses Gunrock
[93] as the backend. It extends the existing automatic differ-
entiation and neural network operators and other operations.
Through Gunrock’s own graph operation optimization tech-
nology, the efficiency of GNN training and inference is
greatly improved.

GNNAdvisor [148] is a flexible and effective runtime
system designed to accelerate GNNs on GPUs. It performs
online analysis of the input graph and GNN operations to
provide guidance to GPU-based workload and memory
management agents. Specifically, GNNAdvisor first investi-
gates and determines a number of performance-relevant
characteristics from both the input graph and the GNN
model. Then, GNNAdvisor provides an extremely effective
2D workload management to increase GPU performance
and utilization in a variety of application scenarios. Finally,
based on the community features of the graph, GNNAdvisor
adopts a combination of node renumbering and reclassifica-
tion algorithms to reduce memory access.

GNNLab [151] summarizes the minibatch training
method based on graph sampling into three stages: sample,
extract, and train. When using the GPU to accelerate the
extract stage, the features of frequently accessed vertices
are loaded into the GPU memory in advance to reduce the
amount of feature data copied, thereby accelerating the
extract stage. GNNLab designed a method based on space
sharing, in which the training process is divided into two
parts, with the Sampler in charge of the Sample stage and
the Trainer in charge of the Extract and Train stages. In
terms of cache strategy, GNNLab proposes a cache strategy
based on presampling, which performs several rounds of
graph sampling processes in advance, and then loads the fea-
tures of the vertices with the highest number of samples dur-
ing the presampling process into the GPU memory in
advance.
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3.3.2. Distributed Graph Neural Network System. The main-
stream single-machine GPU GNN systems save all data in
the GPU memory for GNN training and inference. How-
ever, in practical application scenarios, the graphs of GNN
training and inference are huge. For graphs with a scale of
billions or even tens of billions of vertices, it is impossible
to store all data in the memory of a single node at one time.
Therefore, it is critical to adopt a distributed GNN system to
accelerate the efficiency of large-scale GNNs. At present, the
typical distributed GNN systems mainly include DistGNN
[154], Aligraph [158], and P3 [152].

Euler [159] uses the Tensorflow deep learning frame-
work as the backend and extends support for the distributed
CPU GNN framework. The Euler framework mainly
includes three main modules: graph operation module,
aggregation operator, and algorithm implementation mod-
ule to rapidly expand the GNN model. Among them, the
graph operation module is responsible for the storage of
graph structure data and its feature vector data. The aggrega-
tion operator module supports a variety of aggregation oper-
ations on graph vertices or edges, such as globally weighted
sampling vertices and edges. In the algorithm implementa-
tion module, Euler integrates a variety of common GNN
algorithms, such as Scalable-GCN, a general algorithm for
accelerating GNN tasks. However, Euler needs to cache the
graph vertices and their K-hop neighbor vertices at one time.

P3 [152] is a distributed framework for large-scale GNN
training. It focuses on reducing the network communication
time and traffic of the vertex feature vector of the graph
when using the minibatch training method. Different from
traditional DNN distributed training, the graph structure
used in GNN training is associative, and graph vertices or
edges will have high-dimensional feature vectors. P3 innova-
tively proposes a pipeline-based push-pull training method,
which stores graph structure data and eigenvector data sep-
arately, and divides the eigenvector matrix into columns.
The column-wise segmentation of the eigenvectors means
that for each node, there will be some dimensions of the
complete eigenvector matrix for all vertices, and there is no
need to pay attention to any graph distribution, so it does
not need to be expensive to remote the machine node pulls
the required feature vector data. Similarly, P3 also joins the
pipeline parallel design, covering the network communica-
tion time.

DistGNN [154] is optimized based on DGL to support
GNN training in full-batch mode efficiently on CPU clus-
ters. DsitGNN optimizes DGL’s aggregation primitives to
speed up aggregation operations through chunked caching,
dynamic thread scheduling, and optimized loop execution
using LIBXSMM. To reduce traffic, DistGNN uses a vertex-
cut based graph partitioning algorithm. At the same time, to
further reduce the communication’s impact on the training
performance during the vertex aggregation operation on the
graph, DistGNN introduces a delayed aggregation update
strategy of cutting points, overlapping communication and
calculation, and hiding the communication overhead during
aggregation.

Dorylus [160] is a distributed GNN training framework
that can scale to billion-edge graphs using low-cost

resources. To solve the problem of limited memory of GPUs,
which does not scale to large graphs, Dorylus leverages ser-
verless computing to increase scalability, and the key idea
is computational separation. Computational separation can
enable a pipeline where computational and tensor-parallel
tasks on the graph can completely overlap. It divides the
training pipeline into a set of fine-grained training pipelines
according to the type of data processed by the training
pipeline.

Aligraph [158] is a comprehensive distributed GNN
framework built on the Tensorflow deep learning frame-
work, which can process very large-scale graphs. It mainly
consists of three parts, namely, (1) storage, which imple-
ments partitioning using multiple algorithms depending on
the characteristics of the graph to minimize data movement;
(2) sampling, which allows for the definition of algorithms,
and custom sampling of relevant node neighborhoods; (3)
operators, which implements combination and aggregation
functions.

In order to optimize data communication between mul-
tiple GPUs, the distributed graph communication library
DGCL [161] is proposed mainly for efficient GNN training.
At the core of DGCL is a communication planning algo-
rithm tailored for GNN training, which collectively takes
into account the full utilization of fast links, converged com-
munication, avoidance of contention, and balancing the load
on different links. Existing single-GPU GNN systems can be
easily extended to distributed training using DGCL.

ByteGNN [155] is a GNN training system based on
GraphLearn. ByteGNN analyzes the problems of existing
distributed GNN training systems: higher network commu-
nication costs, lower CPU utilization, and GPUs that cannot
bring significant training benefits. ByteGNN divides the
minibatch of graph sampling into five basic operations and
expresses the sampling process using a DAG composed of
basic operations, which enables fine-grained parallelism
within the sampling. ByteGNN designs a two-level schedul-
ing strategy to adaptively adjust the resources allocated for
sampling and training to maximize CPU utilization and
speed up training. ByteGNN designs a partitioning method
specific to minibatch graph sampling to reduce the large
amount of network communication caused by graph sam-
pling during training.

NeutronStar [156] proposed a large-scale graph neural
network training system in a distributed heterogeneous envi-
ronment supporting mixed dependency management. Neu-
tronStar analyzes and summarizes the existing distributed
GNN system from the vertex dependency management
strategy and finds that there are two main methods. One is
a method based on dependency caching. Specifically, for a
k layer neural network, the vertices are divided into different
subsets depending on the caching strategy. Each vertex sub-
set (including vertex attributes and vertex labels) and its
dependent k order neighbors will be assigned to a worker
node for GNN training. The other is a method based on
dependency communication, that is, instead of caching the
training dependency subgraph, each vertex obtains the
training dependency from the local or remote machine
through communication. NeutronStar designs an automatic

14 Intelligent Computing



dependency management module, which selects the process-
ing strategy with the least cost for each vertex, to maximize
the utilization of communication and computing resources.

4. Domain-Specific Architectures for
Graph Analytics

4.1. Graph Processing Accelerators. Graph processing is
widely used to analyze complex relationships among entities
in fields such as machine learning, roadmap, and social net-
works. With the era of big data, real-world graphs have
become even larger and more complex. Due to the graph’s
irregular characteristic, traditional architectures, such as
CPUs and GPUs, have difficulty completing graph process-
ing with high performance and low energy consumption.
Therefore, architecture innovations in graph processing are
urgently needed to support the increasing scale of graph pro-
cessing. Graph processing accelerators have been designed
on various hardware platforms, including FPGAs, ASICs,
and PIMs. Accelerators designed on FPGAs and ASICs typ-
ically feature dedicated computational logic circuits and
memory hierarchies to accommodate the irregular computa-
tions present in graph processing. In situ computation with-
out excessive data movement is emerging to accelerate
memory-bound applications such as graph processing.
Novel memory devices, such as HMC and ReRAM, are used
to build PIM-enabled accelerators to accelerate graph pro-
cessing. Next, we will review the aforementioned graph pro-
cessing accelerators. Table 4 gives an overview of graph
processing accelerators.

4.1.1. FPGA-Based Graph Processing Accelerators. With the
characteristics of flexibility and low energy consumption,
FPGA is widely used in boosting the performance of graph
processing. With the limited on-chip resources, the key to
designing the FPGA-based graph processing accelerators is
efficiently utilizing the on-chip memory resources, effec-
tively handling the conflicts of the pipelines and improving
the utilization of the off-chip memory bandwidth.

Existing Efforts on FPGAs. The high bandwidth of block
RAMs (BRAMs) on FPGA enables high-throughput random
data access, which can effectively alleviate the high band-
width requirement in graph processing. However, the mem-
ory of BRAMs is too finite to store the whole graph data.
Therefore, many existing works extend to improve the utili-
zation of BRAM. By partitioning the fine-grained graph
data, both FPGP [22] and ForeGraph [162] improve the
multiplex efficiency of the on-chip data, reducing the mem-
ory access latency. The overall framework of FPGA-based
graph processing accelerator is shown in Figure 4. Shared
vertex memory can be accessed by all FPGA chips. Each
FPGA chip contains the Processing Kernels, which provide
programmable logic enabling designers to create graph
updating kernel functions, and on-chip caches for read and
write of vertices.

When a high-degree vertex is frequently accessed, the
pipelines will probably be blocked due to the atomic protec-
tion for the vertex updates. AccuGraph [17] fills this gap. By
executing atomic operations in parallel through a specific
accumulator, AccuGraph [17] eliminates the serialization
of the conflicting vertices updates in atomic protection,
reducing the conflict waiting in pipeline.

Table 4: An overview of graph processing accelerators.

Year Accelerator Architecture PM EM Generality Baselines

2016 FPGP [22] FPGA V Sync BFS GraphChi [96]

2017 ForeGraph [162] FPGA E Sync Various FPGP

2018 AccuGraph [17] FPGA V Sync Various ForeGraph

2017 Zhang et al. [31] FPGA V Sync BFS FPGP

2018 Khoram et al. [33] FPGA+HMC V Sync BFS Zhang et al. [31]

2021 ThunderGP [163] FPGA V Sync Various Hitgraph [25]

2022 SPLAG [164] FPGA V Async SSSP Hitgraph,ThunderGP

2016 Graphicionado [48] ASIC V Sync Various GraphMat [165]

2018 Minnow [166] ASIC V Async Various Galois [85]

2018 HATS [167] ASIC V Sync Various IMP [168]

2019 GraphDynS [47] ASIC V Sync Various Gunrock,Graphicionado

2020 GraphPulse [169] ASIC V Async Various Ligra,Graphicionado

2021 DepGraph [44] ASIC V Async Various HATS, Minnow, PHI [170]

2021 PolyGraph [52] ASIC V Both Various Gunrock, GraphPulse, etc.

2015 Tesseract [78] PIM V Sync Various
DDR3-based system
HMC-based system

2017 GraphPIM [79] PIM V Sync Various GraphBIG [171]

2018 GraphP [82] PIM V Sync Various Tesseract

2018 GraphR [69] PIM V Sync Various GridGraph,Gunrock,etc.

2019 GraphQ [83] PIM V Both Various Tesseract

2020 GaaS-X [172] PIM V Sync Various GraphR
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A number of studies focus on improving the utilization
of the off-chip storage bandwidth. FabGraph [23] provides
a two-level vertex caching technique. The UltraRAM serves
as the L2 cache to interact with the DRAM, while the BRAM
serves as the L1 cache coupled to the pipelines. To conserve
DRAM bandwidth during processing, the L1 cache interacts
with the L2 cache.

Integration with Hybrid Memory Cubes. With the devel-
opment of technology, emerging storage hardware also pro-
vides us new solutions to solve the challenges in graph
processing, e.g., HMC. Utilizing the low latency in random
access and the high parallelism of HMC, Zhang et al. [31]
achieved more than an order of magnitude throughput
improvement on BFS compared to FPGP. Furthermore,
Khoram et al. [33] analyzes the previous data access patterns
of HMC and observes that the flag read operation contrib-
utes the most to the HMC access frequency, which severely
affects performance. By fine-grained clustering and merging
of memory requests, Khoram et al. [33] solves the perfor-
mance bottleneck of previous work, resulting in improved
performance and scalability.

Emerging Efforts on FPGAs. Recently, there are still new
researches about the FPGA-based graph processing acceler-
ator. GraSu [173] develops a library for FPGA to leverage
the spatial similarity for quick graph updates, aiming to close
the gap that current FPGA-based graph accelerators can
hardly handle dynamic graphs. In order to lower the thresh-
old of hardware design and improve programmability,
ThunderGP [163] provides convenience for developers. With
no knowledge of the hardware, the developers can still easily
design by writing only a few high-level functions. Besides,
SPLAG [164] accelerates SSSP for power-law graphs by using
a coarse-grained priority queue (CGPQ) to enable high-
throughput graph traversal. In conclusion, recent work on
FPGA-based graph accelerators presents a diversified trend.

4.1.2. ASIC-Based Graph Processing Accelerators. ASIC is an
integrated circuit chip that is customized for a particular use.
It is composed of electrical components such as resistors.
Typically, ASIC chips are fabricated on electronics wafers
using metal-oxide-semiconductor technology. Different

from the FPGA whose hardware logic can be reprogrammed
to implement different functions, the function of an ASIC
chip is hard-wired at the time of manufacture and has no
chance of being changed. ASICs have the advantages of
compaction, high speed, and low power, which introduce
substantial opportunities to the design of graph processing
accelerators.

Memory Hierarchy Designs. The irregular memory access
pattern is a key characteristic and bottleneck of graph work-
loads. There are several graph processing accelerators pro-
posed to optimize the memory latency- or bandwidth-
bound problem. Graphicionado [48] proposes a hardware
pipeline for graph processing that focuses on the datatype
and memory subsystem. Specifically, the frequently accessed
vertices property data is kept in a sizable on-chip eDRAM
scratchpad memory. The on-chip memory can significantly
improve the throughput of random vertex accesses com-
pared with the expensive off-chip memory access.

Except for using a large on-chip scratchpad memory to
optimize irregular memory access, fully exploiting data
locality is another important optimization method. Prefetch-
ing is a popular method to optimize locality. Minnow [166]
is an accelerator that offloads worklist scheduling and per-
forms prefetching based on the worklist. It exploits knowl-
edge from upcoming tasks to operate accurate prefetching
in real-time. HATS [167] proposes and implements
bounded depth-first scheduling (BDFS), which is a straight-
forward yet very efficient online schedule method to enhance
the locality of graph applications. BDFS-HATS can signifi-
cantly reduce memory accesses with inexpensive extra hard-
ware overhead. GraphDynS [47] tries to deal with
irregularities from the data-dependent graph algorithm
behavior which is the origin of irregularities. It features a
hardware/software cosdesign with separated datapath and
data-aware dynamic scheduling. GraphDynS proposes a
new programming model to extract data dependencies on-
the-fly and presents several dynamic schedule strategies
based on data dependency information. As a result, Graph-
DynS can significantly alleviate the irregularity and achieve
higher performance and lower energy consumption than
previous works.

Shared vertex memory

FPGA
chip

FPGA
chip

FPGA
chip

Local edge storage Local edge storage Local edge storage

Vertex 
read 
cache Processing 

kernels

Vertex 
write 
cache

FPGA chip

Figure 4: FPGA-based graph processing accelerator framework.
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Computing Units Designs. ASIC-based accelerators
introduce opportunities to design and implement more effi-
cient computing units to achieve higher graph processing
performance. Designing novel processing frameworks with
different program driving methods is generally adopted in
[44, 169]. GraphPulse [169] is an asynchronous graph pro-
cessing hardware framework with event-driven scheduling.
By applying optimization strategies such as coalescing events
and prefetching, GraphPulse can achieve high throughput.
In addition, the asynchronous processing model brings more
opportunities for task scheduling. DepGraph [44] proposes a
dependency-driven asynchronous execution approach.
Through the dependency chains which are generated effi-
ciently at runtime, DepGraph can accelerate the propagation
of vertices’ states, thereby helping speed up the algorithm
convergence.

Flexibility Oriented Designs. The aforementioned accel-
erators are focused on a certain graph algorithm variant.
Different graph workloads and input graph datasets are per-
formed well on different accelerators designed with different
optimization strategies. None of the aforementioned acceler-
ators can get the best performance for all scenarios. Poly-
Graph [52] explores the relationship among graph
workloads, graph datasets, optimization strategies, and final
performance. PolyGraph classifies algorithm variants from
four dimensions including update visibility, vertex schedul-
ing, slicing scheduling, and update direction and further
proposes a heuristic method to specify which variant is best
for a given workload and dataset. By proposing the execu-
tion model called “Taskflow,” which integrates dynamic task
parallelism and pipelined dataflow execution, PolyGraph
implements a unified accelerator supporting different algo-
rithm variants efficiently. Due to the exposed flexibility of
graph accelerators, PolyGraph can achieve better perfor-
mance on a variety of algorithm variants than previous
accelerators.

Productivity Oriented Designs. Programmability is also a
key issue in ASIC-based graph accelerator design. Seasoned
designers usually use hardware description languages such
as Verilog and VHDL to develop ASIC-based accelerators.
However, prototyping an accelerator from scratch is chal-
lenging and error-prone due to the sizable design efforts
involved. Many previous software-based works have
addressed the programmability problems by proposing
graph processing programming frameworks that handle
system-related complexities including work scheduling, data
communication, synchronization, and reliability, while
domain experts only need to provide the application-level
data structures and operations to develop distributed parallel
programs. Ozdal et al. [51, 174] propose an architecture
template and implement it as synthesizable SystemC models.
For application developers, it is easy to specify data struc-
tures and operations related to applications to generate dif-
ferent complex graph processing hardware accelerators. In
addition, by proposing some microarchitectural features
such as allowing processing hundreds of vertices/edges
simultaneously to conceal high memory access latency, the
template-based graph accelerator can achieve high through-
put and work-efficiency for graph applications. Moreover, it

uses hardware primitives to address potential hazards and
guarantee the correctness of final results.

4.1.3. PIM-Based Graph Processing Accelerators. Graph pro-
cessing accelerators based on traditional architectures
exhibit remarkable performance. However, the extremely
low ratio of computations to data movements causes data
to be moved frequently between compute and storage units,
incurring significant time and energy overheads. With the
emergence of PIM devices [79, 175], which incorporate the
processing unit in the memory, the efficiency of data
processing and transferring are significantly enhanced. As
aforementioned, current PIM-based graph processing accel-
erators can be divided into PNM and PUM.

Considering the irregular memory accesses in graph pro-
cessing, the PNM-based architecture integrates the comput-
ing logic inside the memory chip to reduce the data
movement. Tesseract [78] is the first full-featured large-
scale graph accelerator based on PNM, which follows the
programming model and message passing mechanism of
the distributed CPU graph processing system GraphLab
[104] to ensure usability. Due to the inefficient interconnec-
tion interactions between HMCs, Tesseract suffers from
communication blocking, resulting in large communication
overhead. Based on Tesseract, GraphP [82] is proposed,
which adopts an efficient interconnection network and
reduces the number of communications between HMCs by
optimizing the data partitioning. In contrast to reducing
the number of communications, GraphQ [83] focuses on
the overhead of a single communication. It packages mes-
sages and sends them in a nonblocking manner to reduce
the overhead of a single message communication. Unlike
previous works, GraphPIM [79] proposes a CPU-HMC het-
erogeneous graph processing architecture. Observing that
vertex updates involve a large number of atomic operations,
GraphPIM offloads the atomic operations to the HMC,
reducing data access overhead and thus improving overall
performance.

PUM is another type of PIM architecture that exploits
the analog properties of the memory cell itself to perform
computational functions. It allows the memory cell to store
data and perform in situ calculations at the same time,
essentially eliminating the movement of data during the cal-
culation process. Considering that the calculation operations
for graph processing are typically simple, only minor circuit
modifications to existing memory can meet the computa-
tional requirements.

ReRAM is representative of this type of PUM architec-
ture which could be the essential hardware foundation for
performing matrix-vector multiplication in graph processing
[69]. GraphR [69] adapts the graph algorithm to the matrix-
vector multiplication paradigm and achieves significant per-
formance gains while maintaining the correctness of the
algorithm. Since real-world graph data is usually extremely
sparse, the ReRAM-based accelerator suffers from a large
number of invalid computations during computation. Spara
[74] reorganizes highly correlated data together by exploit-
ing the intrinsic community properties of graph data, thus
improving the execution efficiency of the ReRAM crossbar
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arrays during practical execution. Considering the write cost
is higher than read cost, GaaS-X [172] stores graph data in a
sparse form in the ReRAM to avoid redundant writing of
data.

4.2. Graph Mining Accelerators. Graph mining applications
aim to find user-interested subgraph patterns, e.g., subgraph
matching, motif counting, and frequent subgraph mining.
Graph mining algorithms are usually NP-hard and consume
huge amounts of computational resources and memory
space due to the large search space of subgraphs. Mining
simple size-4 cliques in a small graph with only 1 million
edges can take several hours to finish on an 8-node cluster
[137]. The size of generated intermediate data can easily
reach tera-bytes for graphs with million-level edges. In
real-world scenarios, the scale of graph mining problems is
much larger, requiring numerous resources to finish. It is
urgent to seek help from hardware approaches to accelerate
graph mining problems. Early proposed graph processing
accelerators have presented promising potentials for acceler-
ating graph applications with emerging hardware. However,
these accelerators cannot be directly used for graph mining
because the underlying processing paradigms and key chal-
lenges are largely different. Graph mining accelerators
explore various ways to exploit the potential of hardware
to accelerate graph mining applications, from specialized
algorithm mapping to generalized instruction-level optimi-
zations. Generally, according to the oriented hardware plat-
forms, the graph mining accelerators can be divided into
three categories, i.e., the FPGA, ASIC, and PIM-based accel-
erators. Table 5 gives an overview of graph processing
accelerators.

4.2.1. FPGA-Based Graph Mining Accelerators. Graph min-
ing applications suffer from numerous random memory
accesses to vertices and edges. FPGA offers fast on-chip

memory such as BRAM which is suitable for accelerating
the graph mining operations. Existing works mainly focus
on cache hierarchy designs to facilitate the FPGA.

GRAMER [50] is the world’s first general-purpose
domain-specific graph mining accelerator. GRAMER
employs the embedding-centric programming model that
continuously extends and traverses all subgraphs to find
interesting graph patterns. This model requires many ran-
dom accesses to both vertices and edges of an embedding
during the expansion phase. In graph mining, a tiny propor-
tion of vertex and edge data results in the majority of mem-
ory accesses. The power-law characteristic of real graph
structure and the scaling feature of graph mining itself pro-
vide the fundamental rationale. In the procedure of expand-
ing the embedding in graph mining, high-degree vertices are
more likely to be accessed. When the embeddings are
expanded again, these newly added high-degree vertices will
be accessed frequently, resulting in an obvious power-law
distribution of data access. The percentage of accesses to
the first 5% of the edge data will exceed 90% in the subse-
quent iterations.

To accurately locate and efficiently cache these edges to
exploit their locality, GRAMER proposes a locality-aware
on-chip cache design, which consists of eight independent
cache partitions to handle different access requests simulta-
neously. For the 5% of frequently accessed vertex and edge
data, GRAMER uses a high-priority cache implemented as
scratchpad memory for static storage, thus minimizing the
access latency of frequently accessed data. For the remaining
95% of the vertex and edge data, GRAMER uses a low-
priority dynamically managed cache, further improving the
overall access performance.

FAST [176] is the first CPU-FPGA heterogeneous accel-
erator dedicated for subgraph matching. Implementing sub-
graph matching on FPGA is nontrivial work, facing the
challenges of strictly pipelined design and limited on-chip

Table 5: An overview of graph mining accelerators.

Year Accelerator Architecture Memory design Computing design Flexibility

2020 Gramer [50] FPGA Hybrid cache Pipeline

2021 FAST [176] FPGA Partitioned CST
Pipeline

Task parallelism
CPU-FPGA
codesign

2020 TrieJax [41] ASIC Dedicated cache Join optimization Coprocessor of CPU

2021 FlexMiner [54] ASIC C-map
Multicore

Set operations
Software/hardware interface

2022 FINGERS [43] ASIC
Branch parallelism
Set parallelism

Segment parallelism
Software/hardware interface

2022 SparseCore [177] ASIC Hybrid cache Stream computing
ISA

Sparse computing

2021 SISA [71] PIM Hybrid data representation Hybrid computing
ISA

Graph learning

2022 NDMiner [178] PIM
Load elision

Data parallelism
Composite computing ISA

2022 DIMMining [179] PIM
Index precomparison

BCSR format
Systolic merge array

ISA
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memory resources. FAST solve the challenges with a novel
software/hardware codesign that flexibly schedules tasks
between CPU and FPGA to fully unleash the power of these
two devices. In FAST, the CPU is responsible for scheduling
tasks and maintaining an auxiliary Candidate Search Tree
(CST) to be processed by FPGA. The CST is partitioned so
that each partition can fit the limited FPGA resources. On
the FPGA side, FAST proposes a three steps subgraph
matching algorithm to support massive parallelisms for
pipeline execution. Specifically, based on the matching
order, a generator extends partial results and finds new sub-
graphs, then a Validator component checks the validation
condition of newly generated intermediates, after which a
Synchronizer fetches and reports the results. Each step can
handle many partial results at a time so that the FPGA pipe-
line is fully utilized. FAST also proposes a BRAM-only
matching mechanism to cache the partial results to avoid
expensive external memory access. Leveraging the main
memory of CPU-FPGA codesign architecture, FAST can
easily support billion-scale graphs.

4.2.2. ASIC-Based Graph Mining Accelerators. Current
ASIC-based graph mining accelerators all use the pattern-
aware methodology to conduct graph mining applications,
for the bounded memory footprint and inherent high con-
currency. Existing research all adopt software/hardware
codesigns to mapping graph mining applications to hard-
ware logic, from algorithm-level mapping [41] to instruction
level extensions [177].

TrieJax [41] is an energy-efficient on-die accelerator spe-
cialized for graph pattern matching problems. The key inno-
vation of the accelerator design originates from a variant of
the advanced Worst-Case Optimal Join (WCOJ) algorithms,
Cached TrieJoin (CTJ), which is highly amenable to hard-
ware designs. WCOJ algorithms naturally bound the inter-
mediate results, which are friendly to limited hardware
resources and provide inherent concurrency for specialized
hardware parallelization. In order to support the CTJ algo-
rithm, TrieJax architects the accelerator as a coprocessor that
can be integrated into traditional CPUs as an additional
core. TrieJax can directly access the graph in the main mem-
ory in an efficient way while leaving the scarce on-chip
scratchpad memory for caching the intermediate results.
Specifically, TrieJax decouples the CTJ algorithm into nor-
malized join (TrieJoin) and cached join workflows by a
SRAM-based partial join results cache. The TrieJoin module
extends intermediate subgraphs by conducting basic join
operations. The computed results are scheduled by a Cupid
component in the cached join workflow. The recurring com-
putations can reuse the cached results. TrieJax also enables
multithreading to further hide memory latency and pipeline
the cache reusing procedure.

FlexMiner [54] is the first general-purpose pattern-aware
graph mining accelerator that incorporates a software/hard-
ware codesign. Graph mining problems can be transformed
into a series of graph pattern matching tasks, that is, a set of
graph patterns to be explored. FlexMiner decouples the
graph mining application development from the hardware
design using a flexible compiler that automatically trans-

forms the user input patterns into hardware execution plans.
The execution plan defines the exact matching order of
graph pattern vertices and corresponding operands and
basic operators for each iteration. Given a series of patterns,
the execution plans are represented by a specialized interme-
diate representation (IR), which supports multipattern opti-
mization and provides hints for data management. The
underlying hardware architecture of FlexMiner implements
an efficient DFS tree walker that can traverse the entire sub-
graph search space to find unique subgraphs. A number of
processing elements (PEs) are connected via an on-chip net-
work. These PEs are independent of each other, each is com-
posed of an extender, a pruner, and a reducer component.
The extender adds new vertices to an intermediate subgraph,
and then the pruner validates the candidates by a c-map data
cache and the SIU/SDU units conducting set intersection/
difference. The reducer finally operates the user-defined
functions to compute statistics for each pattern according
to the explored subgraphs. The software/hardware codesign
helps FlexMiner to achieve high performance while main-
taining ease of programming.

FINGERS [43] is an accelerator that fully exploits the
multilevel fine-grained parallelism in the procedure of
pattern-aware graph mining. Previous graph mining acceler-
ators usually adopt a DFS mode to traverse the subgraph
search tree to save memory footprint and only consider the
coarse-grained parallelism, e.g., parallelizing the starting ver-
tices or staying on the subgraph level parallelism. However,
during the exploration of subgraphs, there is still parallelism
to be exploited at the branch, set, and segment levels. Specif-
ically, the branch-level parallelism is exposed by losing the
strict DFS mode to traverse the branches of the search tree
in parallel. The set-level parallelism is utilized by conducting
multiple set operations simultaneously to exploit data local-
ity. The segment-level parallelism is inside a set operation,
and the data of a set is divided and processed in parallel.
FINGERS implements a similar high-level architecture as
in FlexMiner and inherits the benefits of easy programming.
For PE designs, FINGERS enhances the processing logic to
support multilevel parallelism and proposes a novel schedul-
ing strategy and data organization to fully utilize the compu-
tation resources.

There are also works to explore instruction set architec-
ture (ISA) and corresponding hardware designs specialized
for graph mining. SparseCore [177, 180] propose the stream
instruction set extension which represents the core compu-
tational operations in graph mining. Specifically, a stream
is defined as a sparse vector in SparseCore. The stream is
expressive and can represent various data formats, e.g., the
edges of a graph and a list of (key, value) tuples. Stream
ISA provides multiple extensions to traditional ISA, i.e., ini-
tializing and freeing a stream, computing on streams, and
accessing the stream. Specifically, the operands of the stream
instructions are general registers denoting which streams are
involved. SparseCore supports three types of basic computa-
tions on streams, intersection, subtraction, and merging. The
output of these computations can be further defined if only
counting is needed. According to the stream ISA, Sparse-
Core also presents a hardware design using the same
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conventional processor architecture. There are multiple par-
allel stream units that process the computations. The archi-
tecture is optimized by exploiting the data reuse of streams
with a stream cache and coordinating among streaming
units to improve sparse computation. The stream ISA-
based design provides the flexibility of supporting complex
sparse applications, such as graph pattern mining algorithms
and learning applications.

4.2.3. PIM-Based Graph Mining Accelerators. Graph mining
can be represented in a series of set operations that are mem-
ory bound. The high bandwidth of PIM architecture natu-
rally suits graph mining applications. Existing PIM-based
graph mining accelerators exploit the inherent data parallel-
ism from both the set operations and the memory architec-
tures to maximize performance.

SISA [71] provides a set-centric ISA to support graph
mining on PIM architectures. Specifically, vertices and edges
can be represented as sets. SISA supports high-throughput
set intersection and set union, while these set operations
usually consume most of the runtime in existing CPU sys-
tems. The reason mainly lies in the high bandwidth require-
ment when conducting these operations because the edges as
the operands are frequently accessed, which is proved in the
stalled CPU cycle analysis in SISA. PIM architectures natu-
rally fill in the gap between the bandwidth requirement
and what memory devices can provide. However, the large
amounts of intermediate results, interdependencies, and
workload imbalance issues of graph mining make it chal-
lenging to utilize PIM. SISA tackles these challenges by
designing an ISA based on set algebra and exploiting various
possible PIM solutions to parallelize the set computations
flexibly. Specifically, SISA supports several high-
performance set intersections, set unions, and set difference
operations. These instructions are optimized considering
both the sparse and dense sets. A set can be stored as a
sparse array of integers or dense bitvectors. The bitvectors
is processed using in situ PIM methods (SISA-PUM) that
directly compute through the DRAM circuitry with a little
modification on the DRAM rows. There are no changes to
the DRAM interfaces. The sparse array is processed in a
near-memory mode (SISA-PNM) like the HMC architec-
ture. These two computation modes are selected on-the-fly
to take the best of both. SISA also provides high-level pro-
gramming interfaces. Users only need to invoke an opaque
type set and program in the normal way.

NDMiner [178] adopts the set-centric model and lever-
ages the Near Data Processing (NDP) idea to tackle memory
inefficiencies in graph pattern workloads. Through a thor-
ough analysis of graph pattern mining, NDMiner character-
izes the memory inefficiencies from four aspects. First, the
operands of a set operation are usually distributed in differ-
ent DRAM banks. Second, existing systems suffer from
bandwidth wasting and low cache efficiency caused by
symmetry-breaking optimization. Third, recurring set oper-
ations result in the same data being redundantly read.
Fourth, the limitation on the capacity of the memory con-
troller prevents graph pattern mining applications from fully
using the internal data parallelism of the DRAM. To solve

these inefficiencies, NDMiner exploits multilevel (i.e., bank,
rank, and channel-level) parallelism in a DIMM-based
DRAM and proposes novel architectural extensions special-
ized for graph mining. Specifically, for improving the utiliza-
tion of bandwidth, NDMiner devises a load elision unit to
abort unnecessary workloads brought by symmetry break-
ing. In order to remove the redundancies between different
operations, NDMiner integrates compiler optimizations to
merge possible computations and enables data reuse. It also
proposes a reordering approach that dedicatedly maps graph
data to the DRAM and schedules the set operations accord-
ingly to fully utilize the multilevel data parallelism. For pro-
gramming, NDMiner provides an ISA extension and
modifies the memory controller accordingly.

DIMMining [179] is a DIMM-based PIM accelerator
that solves the bottleneck of heavy comparison operations
and data transfer for parallel graph mining. DIMMining
adopts the principle of software/hardware codesign. Specifi-
cally, for alleviating the cost of pruning during runtime,
DIMMining proposes an index precomparison strategy that
partitions the neighbors of targeting vertices into small sets
and identifies only necessary parts of the neighbors for com-
parison. According to the index precomparison, the compar-
ison operations during runtime are largely reduced. To
explore high parallelism in core set operations, i.e., set inter-
section and subtraction, DIMMining designs the BCSR data
structure that stores the neighbor sets in a compressed bit-
map format which is friendly to memory capacity and pro-
vides high parallelism. The set operations work on the
BCSR format and are executed under a novel systolic merge
array (SMA) structure which offers high throughput. DIM-
Mining is architected with rank-level near memory comput-
ing processors in Load-Reduced DIMM. Two computing
modules are added to the rank while the registering clock
driver is modified to achieve instruction decoding and selec-
tion of computation modes. DIMMining can also switch
between memory mode and computing mode.

4.3. Graph Learning Accelerators. As graph structured data is
increasingly employed in various scenarios, emerging graph
analytic applications, represented by graph convolutional
networks (GCNs), have been widely pervasive. In contrast
to traditional graph analytic applications, GCNs exhibit an
incredible complexity. On the one hand, from the data per-
spective, the attributes of vertices and edges within the graph
are typically more diverse instead of a single scalar informa-
tion. On the other hand, in terms of computation, GCNs
incorporate not only the memory-intensive graph traversal
operations in traditional graph analytic applications, but also
the computation-intensive vertex feature extraction opera-
tions in neural network applications, exhibiting heteroge-
neous computational characteristics. This complexity
renders existing architectures failing to implement GCNs
efficiently, thus several research efforts attempt to customize
hardware units to accelerate GCN execution. Table 6 gives
an overview of graph learning accelerators.

4.3.1. FPGA-Based Graph Learning Accelerators. FPGAs
allow for the implementation of various circuits by

20 Intelligent Computing



organizing the available hardware resources and program-
ming them through low-level hardware description lan-
guages (e.g., Verilog), offering high parallelism and
customizability. Therefore, FPGAs are widely used for GCNs
acceleration, which can effectively alleviate the execution
inefficiency of GCNs in general-purpose architectures. [37,
181, 182].

GraphACT. GraphACT [37] proposes a heterogeneous
CPU-FPGA accelerator for GCNs training. GraphACT
selects a subgraph-based minibatch algorithm [189] from
various GCN training algorithms to minimize CPU-FPGA
communication costs. According to the different hardware
characteristics of CPU and FPGA, the authors partition the
workloads between FPGA and CPU. CPU performs
communication-intensive operations, including preprocess-
ing, graph sampling, and nonlinear functions. FPGA exe-
cutes the key steps of GCN training, such as forward and
backward propagation passes. Moreover, GraphACT pre-
sents optimizations for the scheduling of FPGA modules
and the scheduling between CPU and FPGA, which
improves the execution efficiency of the pipeline.

AWB-GCN. GCN inference applications struggle to
improve performance when processing large-scale graph
data with highly unbalanced nonzero data distributions
and extremely high sparsity. To address the issue, AWB-
GCN [181] proposes three autotuning techniques to balance
the workload. Specifically, the first one is called distribution
smoothing to balance the workload between neighboring
processing engines. The second one is called remote switch-
ing to exchange the workloads between busy and idle pro-
cessing engines. The third one is called evil row
remapping, which partitions and distributes the workloads
of the evil row (containing too many nonzero elements) to

a set of under-overloaded processing engines. AWB-GCN
also explores the parallelism of intralayer and interlayer
computation, with the benefit of reducing the overall latency
and avoiding pipeline bubbles.

I-GCN. This work proposes an FPGA accelerator with an
online graph restructuring algorithm for GCN Inference.
The authors [182] argue that the cost of the offline prepro-
cessing method previously proposed to solve the problems
of poor data localization and redundant computation in
the GCN inference process cannot be ignored since real-
world graphs are frequently dynamic. I-GCN provides an
algorithm called Islandization, which can identify internally
connected vertex groups (Islands) and nodes with high
degrees (hubs) in the graph at runtime. When processing
each island, only the associated data of the internal island
nodes need to be accessed, significantly reducing the com-
munication between the accelerator and the external mem-
ory. Furthermore, the aggregation phase can identify and
eliminate redundant computations because of the large
number of common neighbors between nodes inside the
islands.

ACE-GCN. ACE-GCN [183] proposes a data-driven
FPGA accelerator, which exploits the inherent high sparsity
and power law distribution commonly exhibited by real-
world graph datasets. It provides the implicit-processing-
by-association concept, which is similar to Islandization in
I-GCN to guide the design of the accelerator. Specifically,
based on estimation of graph structural similarity, ACE-
GCN is able to automatically provide faster and less-
expensive embedding estimations, which finally reduces the
neural network workload and accelerates inference. In addi-
tion, DRAGON [190] expands ACE-GCN to support
dynamic graphs.

Table 6: An overview of graph learning accelerators.

Year Accelerator Architecture Data layout Edge scale Preprocessing Scheduling Generality

2020 GraphACT [37] FPGA CUST 105, 107
� �

Yes Agg ⟶ Com GCN

2020 AWB-GCN [181] FPGA CSC 103, 108
� �

No Com ⟶ Agg GCN

2021 I-GCN [182] FPGA CUST 103, 108
� �

No Com ⟶ Agg GCN

2021 ACE-GCN [183] FPGA CUST 103, 106
� �

No Com ⟶ Agg GCN

2020 HyGCN [49] ASIC CSC 103, 108
� �

Yes Agg ⟶ Com GCN

2020 Auten et al. [184] ASIC CUST 103, 104
� �

No Com ⟶ Agg GNN

2021 EnGN [42] ASIC CUST 104, 108
� �

Yes Agg ⟶ Com GNN

2020 GRIP [185] ASIC CUST 106, 107
� �

Yes Agg ⟶ Com GNN

2022 SmartSAGE [186] PIM CSR 109, 1010
� �

Yes Agg ⟶ Com GCN

2022 HolisticGNN [187] PIM CSC/CUST 103, 107
� �

Yes Agg ⟶ Com GNN

2021 PIM-GCN [72] PIM CSC/CSR 103, 108
� �

Yes Agg ⟶ Com GCN

2021 TARe [75] PIM CUST 103, 107
� �

Yes Flexible GCN

2022 ReFlip [3] PIM CSC/CSR 107, 108
� �

Yes Flexible GCN

2021 DARe [188] PIM CUST 105, 107
� �

Yes Agg ⟶ Com GNN
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4.3.2. ASIC-Based Graph Learning Accelerators. In this sub-
section, we focus on ASIC-based GCNs accelerators. Con-
sidering irregular data accesses and dense neural
computations, several specialized ASIC-based accelerators
are proposed to handle the unique problems in GCNs.

HyGCN. HyGCN [49] abstracts GCNs inference as
aggregation phases and combination phases and designs
two separate acceleration engines forming a hybrid architec-
ture. Aggregation phase shows dynamics and irregularity
during executing, HyGCN employs a graph partitioning
and window sliding shrinking strategy to reduce unneces-
sary sparse accesses alleviating the irregular data accesses.
The Combination engine leverages traditional systolic array
method to exploit various parallelism and highly reusable
intervertex data. Finally, HyGCN establishes an interengine
pipeline to coordinate these two phases and adopts
priority-based memory access to improve overall efficiency.

With respect to the computational characteristics, Auten
et al. [184] classifies the inference operations of GCNs into
three categories, containing graph traversal, combination,
and aggregation. Similar to HyGCN, a modular architecture
is proposed to process each operation separately. Specifi-
cally, the graph processing element (GPE) is designed to
control the graph traversal steps. The DNN accelerator
(DNA) is responsible for neural network-liked vertex feature
extraction. The aggregator (AGG) buffers the memory
requests and accelerates vertex neighbors aggregation.

EnGN. EnGN [42] presents a high-throughput architec-
ture for GCNs, which abstracts GCNs inference as three key
phases and accelerates all phases simultaneously. Specifi-
cally, EnGN proposes ring edge reduce (REP) dataflow and
corresponding RER processing elements to solve the low
hardware resource and poor bandwidth utilization. In addi-
tion, EnGN adopts an edge reordering strategy to avoid inef-
ficient computation during REP aggregation. Finally, to
support large-scale graph processing, EnGN proposes a
graph tiling strategy to get subgraphs to enhance locality
and fit the on-chip memory.

GRIP. GRIP [185] points out that there are two modes of
computation involved in GCN inference, leading to ineffi-
ciency and high latency on existing accelerators. To solve
this problem, GRIP first decomposes GCN inference into
two parts including the execution of edge-centric and
vertex-centric and further designs specialized units to accel-
erate each part. In particular, for the edge-centric stage,
GRIP employs parallel prefetching and scaling engines to
mitigate memory access irregularities. For the vertex-
centric stage, GRIP utilizes a high-speed matrix multiplica-
tion model and a specialized memory subsystem for weights
to improve reusability. Furthermore, GRIP uses a vertex til-
ing policy to increase the reuse of weight data to enhance
latency.

4.3.3. PIM-Based Graph Learning Accelerators. We have
discussed the ASIC and FPGA-based graph learning acceler-
ators above, and in this section, we focus on the emerging
PIM architectures. The PIM technology is mainly divided
into PNM and PUM. We now discuss them separately.

The idea of PNM is to couple the storage units and the
computation units close together physically, which can solve
the memory wall problem. In graph learning, the size of the
graph data can be enormous, which is far beyond the on-
chip memory capacity, requiring substantial memory access.
Several PNM accelerators are proposed to solve the memory
bottleneck of graph learning.

SmartSAGE. SmartSAGE [186] proposes an in-SSD pro-
cessing solution to address the memory capacity bottlenecks
in the large-scale GCN training. However, blindly transfer-
ring in-DRAM processing to the in-SSD processing causes
significant performance degradation since the speed gap
between the DRAM and SSD. SmartSAGE develops a soft-
ware/hardware codesign to solve this. In software architec-
ture, it restructures the ML framework to directly access
the SSD bypassing the OS page software layers, which signif-
icantly reduces the latency to fetch data from the SSD. In
hardware architecture, rather than transferring the large,
coarse-grained chunks of the input graph from SSD to
DRAM for subgraph generation, SmartSAGE offloads the
data-intensive phase to the in-storage processing units inte-
grated into the SSD. This allows to only transfer the sub-
graphs from SSD to DRAM, significantly reducing the data
movements.

HolisticGNN. Different from traditional deep learning
networks, the GNNs need to handle massive graph data,
which is stored in the storage initially and loaded into work-
ing memory to reformatted before inference, which brings a
significant latency and degrades the performance. Holi-
sticGNN [187] proposes a hardware/software codesign to
holistically accelerate GNN inference execution in storage.
In software architecture, HolisticGNN manages the data as
a graph structure instead of as files directly, which allows
to sampling and processing the input data near storage with-
out preprocessing. Besides, HolisticGNN allows program-
ming the tasks using a computational graph and simply
transferring it into computational SSD (i.e., CSSD), provid-
ing an easy-to-use, programmer-friendly interface. In hard-
ware architecture, HolisticGNN proposes a hardware
framework that provides fully programmable FPGA-based
fundamental hardware logic for supporting various types
of GNN inferences.

On the other hand, PUM involves the computation and
storage units together by using some emerging devices (i.e.,
ReRAM and MRAM) or applying minimal changes to the
existing memory architecture (i.e., DRAM and SRAM).
Compared to the PNM, PUM has higher computation effi-
ciency due to its in situ processing ability. While the graph
learning workloads are dominated by MVM operations, sev-
eral PUM accelerators are proposed to accelerate it.

PIM-GCN. PIM-GCN [72] is the first in-memory accel-
erator for GCN and demonstrates the mapping of GCN
inference on the ReRAM crossbar architecture. The compute
and memory access characteristics of GCN are different
from the graph analytics and convolutional neural networks.
First of all, the hybrid aggregation and combination execu-
tion pattern and workload characteristics of GCN are differ-
ent from the deep neural network (DNN), which will incur
significantly higher memory accesses and computations.
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Besides, unlike the conventional graph analytics algorithms,
the node feature in GCN is typically much larger than the
edge. Thereby, the memory access optimized DNN accelera-
tors and the edge-stationary dataflow graph analytics accel-
erators are not suitable for the GCN. PIM-GCN proposed
a node-stationary dataflow, which maps the node feature data
on the ReRAM and leverages the in situ ability of the ReRAM
toperformMACoperations for the aggregation and combina-
tion for the GCN. To support the compressed sparse forma-
tion graph data, PIM-GCN also designs an in-memory
traversal mechanism by using the CAM-based search
(S-CAM) and CAM-based compare (C-CAM) operations.

TARe. Due to the data characteristics of the graph learn-
ing workloads, the scheme of the DNN accelerators that map
weights on the ReRAM is not the optimal choice for graph
learning. The selection of which data should be mapped on
the ReRAM influences the data and writes movement over-
head significantly. Unlike the previous work PIM-GCN
[72] that fixed the static data on the ReRAM, TARe [75] pro-
poses a task adaptive selection algorithm that selects the
static data according to the task and a ReRAM in situ accel-
erator that supports weight-static, data-static, and hybrid
execution mode. For a graph learning workload, the task
adaptive selection algorithm first selects the static data and
decides the sparse or dense mapping mode. Then the in situ
accelerator is configured to work in weight-static, data-static,
or hybrid execution mode to achieve higher processing
throughput and less data movement.

ReFlip. Unlike the previous works that separate the com-
bination and aggregation stages using different hardware
specializations, ReFlip [3] proposes to support both stages
of GCN in unified hardware architecture by adopting differ-
ent mapping schemes. For the combination stage, ReFlip
induces a layer-wise mapping scheme that iteratively loads
the weights on the crossbar. However, the crossbar utiliza-
tion may suffer in this way, and ReFlip uses the idle crossbar
to exploit the intervertex parallelism by replicating multiple
weights copies in PEs, improving both storage and computa-
tional efficiency. Due to the incredibly sparse edge data,
ReFlip proposes a flipped mapping that maps the vertex fea-
ture data on the crossbar and feeds the edge data as input for
the aggregation phase. ReFlip also adopts a hybrid row-
major and column-major execution model to maximize effi-
ciency and designs locality-aware hardware to minimize
energy consumption.

DARe. Different from the others that focus on accelerat-
ing the GCN inference phase, DARe [188] focuses on the
GCN training phase. In the GCN training phase, DropEdge
and Dropout (referred to as DropLayer) operations are
implemented to regularize and improve accuracy. However,
the DropLayer operation drops different graph and neural
units in each iteration, leading to randomly varying traffic
patterns that the data exchanged between two adjacent
GCN layers keeps changing in each iteration, which is not
well-suited for traditional 2D architecture to handle such
traffic patterns. DARe proposes a Drop-aware 3D on-chip
network integrated ReRAM-based manycore architecture
to alleviate the communication bottleneck and improve the
computation performance.

5. Challenges and Future Works for
Graph Analytics

Domain-Specific High-Level Synthesis. Prototyping the high-
performance graph accelerator with hardware description
languages (e.g., VHDL and Verilog) is time-consuming and
error-prone, and it requires deep knowledge of underlying
hardware architecture. To cope with this problem, commer-
cial vendors and academic communities have been actively
developing High-level synthesis (HLS) tools, which auto-
matically translate high-level languages into the targeted
hardware accelerator with significant design effort reduction.
In practice, however, existing general-purpose HLS tools is
potentially inefficient for graph applications. It is because
that previous HLS tools are domain-agnostic and graph
characteristics are not sufficiently considered. As a result,
more nontrivial efforts are still needed to fill the program-
ming gap between upper graph applications and underlying
efficient hardware accelerators.

Uncertain Patterns for Graph Mining. Most of the graph
mining accelerators aim to solve the graph mining problems
where the patterns are known as a prior, e.g., subgraph
matching, clique finding. The execution plans generated in
these accelerators must following the guide of patterns.
However, there are still a large number of graph mining
applications that cannot provide the patterns as a prior,
e.g., frequent subgraph mining. In order to solve these prob-
lems, a naïve solution to existing pattern-aware graph min-
ing accelerators is to first enumerate all possible patterns of
a certain size and then mine all these patterns. However, this
will cause unnecessary workloads because for each pattern
the graph data is repeatedly traversed and computed, and
there may only exist a small part of the patterns in the graph.
Despite that the embedding-centric model used in GRA-
MER [50] can support this kind of problem, the huge
amounts of intermediates will easily consume all the mem-
ory capacity of an accelerator. Exploiting the trade-offs of
embedding-centric and pattern-aware model on graph min-
ing accelerators may be a possible way to tackle the
challenge.

Large Graphs and Patterns for Graph Mining. Compared
to real-world scenarios, where the graph usually exceeds
billion-scale and the graph pattern can contain hundreds
of vertices, existing graph mining accelerator can only han-
dle relatively small workloads. With the size of graphs and
patterns increasing, the explosive growth of intermediate
data may limit the parallelism of these accelerators because
of the limited memory space and extremely load imbalance
issue. Some graph mining accelerators that are closely inte-
grated with the CPU can leverage the large main memory
to process billion-scale of graphs. However, the data trans-
ferring between the accelerator and the host will become a
new bottleneck. PIM-based accelerators seem promising fac-
ing larger scale graph mining problems. Emerging memory
technologies such as 3D memory and nonvolatile memory
can provide large capacity and abundant bandwidth and
can be extended to construct larger memory systems. How-
ever, due to the irregular workload of graph mining, it is
nontrivial to achieve good scalability with accelerator
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resources. In the future, software/hardware codesign must be
considered to fully unleash the power of accelerators to solve
real-world problems.

Dynamic Graph Learning. Existing graph learning accel-
erators are mainly designed for static graphs. However, in
many real-world scenarios, graphs are constantly changed.
Existing static graph learning accelerators cannot handle
such dynamic graphs directly. Therefore, studying efficient
graph learning accelerators based on dynamic graph data is
an important direction to explore. Compared with static
graph learning, dynamic graph learning requires capturing
the change of vertices over time, which is supported by
introducing RNNs [191–193]. Notably, different types of
dynamic graph learning may use different types of RNNs.
It means that graph learning accelerators need to support
different types of RNN operations in addition to the original
graph learning algorithms. This presents a significant chal-
lenge to the flexibility and scalability of the accelerator. In
addition, although the graph is constantly changing, the
graph changing are relative calm [194], i.e., only a few verti-
ces of the graph change in a short period of time. Therefore,
recomputing the entire graph would result in a large number
of redundant computations. Exploiting the incremental
computation for dynamic graph learning accelerators is
necessary.

Memory Footprint Limitations. Real-world graph struc-
tures usually have a large number of vertices, and the verti-
ces in graph learning usually have hundreds or thousands
of dimensions of features. This results in very large datasets
for graph learning [195]. Moreover, there are complex
dependencies between vertices. These lead to a high compu-
tational cost and memory requirements for graph learning.
Hence, large-scale distributed accelerator systems for graph
learning are well worth investigating. However, due to the
irregularity of graphs, task allocation among different accel-
erators can cause load imbalance and frequent communica-
tion overhead. It is crucial to design a reasonable scheduling
scheme to minimize the communication overhead and
maintain load balancing. In addition, the execution model
of the graph learning needs to be carefully designed.
Inappropriate execution models can add unnecessary com-
putations. Furthermore, more intermediate data sets are
generated, which causes exacerbation of storage require-
ments. Finally, optimizing memory accesses on the accelera-
tor are also key to further improve system performance. The
footprint is larger than the cache size, which causes fre-
quently expensive memory accesses. Exploiting the locality
of the graph learning algorithm to improve the cache hit
ratio is also worth.

Heterogeneous Graph Learning. A heterogeneous graph
refers to the presence of different types of vertex and edges
in the graph data [196–198]. In the real world, heteroge-
neous graphs are more common than homogeneous graphs.
Processing heterogeneous graphs are often more compli-
cated than homogeneous graphs. However, existing graph
learning accelerators are mainly for homogeneous graph
data, and designing accelerators for heterogeneous graph
data becomes quite important and urgent. In particular, in
a heterogeneous graph, vertices may have different types of

features. Most vertices in a heterogeneous graph do not con-
nect all types of other vertices. The sample of each node in
the heterogeneous graph requires the selection of strongly
correlated neighboring nodes. This leads to more complex
sampling than the simple random sampling in homogeneous
graphs [196]. The accelerator design is more challenging
than the traditional homogeneous graph and requires careful
consideration of the execution of complex sampling
algorithms.

6. Conclusion

The widespread adoption of graph analytics applications and
the gradual increase in the size and complexity of graph data
bring significant challenges for software technologies and
hardware architectures for graph computing. Several exist-
ing software optimization efforts aim to improve the perfor-
mance and efficiency of graph analytics on general-purpose
hardware platforms, such as single-machine platform [84]
and distributed platform [97].

However, there is a gap between the characteristics of
graph analytics and the hardware features of general-
purpose hardware. For example, due to the irregular sparse
structure and explosive growth of graph data, these graph
applications suffer from inefficient memory systems on tra-
ditional architectures. The scale of graph applications con-
tinues to grow, and the demand for bandwidth and
parallelism has far exceeded what current architectures can
provide.

In recent years, novel computing and memory devices
have emerged, e.g., FPGAs, HMCs, HBM, and ReRAM, pro-
viding massive bandwidth and parallelism resources, making
it possible to address bottlenecks in graph applications. In
addition, hardware development has been facilitated by
open-sourced ISAs, convenient cloud-based hardware devel-
opment tools, and agile chip development methodologies.
These opportunities have inspired a series of research on
domain-specific graph accelerators, pursuing extreme per-
formance and power efficiency on different architectures.

Software optimization technologies and hardware accel-
eration technologies have achieved significant performance
improvements. However, the majority of graph computing
in real-world scenarios is characterized by dynamic changes
and complex and diverse application requirements (such as
graph queries, graph processing, subgraph matching, graph
neural network training, and inference) [2, 94, 137, 152].
This brings new requirements and challenges to graph com-
puting in terms of basic theory, key technologies of system
software, and architecture.

This paper systematically introduces and discusses the
research progress and trends of key technologies of software
systems implementation and domain-specific architectures
for graph analytics, including graph processing, graph min-
ing, and graph learning. This paper presents the current
research status and compares the research progress. Finally,
we also point out the challenges faced by graph analytics. In
conclusion, graph analytics is still a popular research topic
with many challenges and opportunities. We hope that this
paper will help more researchers and engineers to
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understand and participate in the research of software
implementation and domain-specific architecture tech-
niques for graph analytics systems and to collaborate to
address these challenges.
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