
Yu H, Jiang XY, Zhao J et al. Toward high-performance delta-based iterative processing with a group-based approach.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 37(4): 797–813 July 2022. DOI 10.1007/s11390-022-2101-1

Toward High-Performance Delta-Based Iterative Processing with a
Group-Based Approach

Hui Yu ( ), Student Member, CCF, Xin-Yu Jiang (), Student Member, CCF
Jin Zhao ( ), Student Member, CCF, Hao Qi ( ), Student Member, CCF
Yu Zhang∗ ( ), Member, CCF, ACM, IEEE
Xiao-Fei Liao (), Distinguished Member, CCF, Member, ACM, IEEE
Hai-Kun Liu (), Senior Member, CCF, Member, ACM, IEEE, Fu-Bing Mao (), Member, CCF,
ACM, IEEE, and Hai Jin ( ), Fellow, CCF, IEEE, Member, ACM

National Engineering Research Center for Big Data Technology and System, Huazhong University of Science and
Technology, Wuhan 430074, China

Service Computing Technology and System Laboratory, Huazhong University of Science and Technology
Wuhan 430074, China

Cluster and Grid Computing Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

E-mail: {huiy, xinyujiang, zjin, theqihao, zhyu, xfliao, hkliu, fbmao, hjin}@hust.edu.cn

Received December 21, 2021; accepted June 29, 2022.

Abstract Many systems have been built to employ the delta-based iterative execution model to support iterative algo-

rithms on distributed platforms by exploiting the sparse computational dependencies between data items of these iterative

algorithms in a synchronous or asynchronous approach. However, for large-scale iterative algorithms, existing synchronous

solutions suffer from slow convergence speed and load imbalance, because of the strict barrier between iterations; while

existing asynchronous approaches induce excessive redundant communication and computation cost as a result of being

barrier-free. In view of the performance trade-off between these two approaches, this paper designs an efficient execution

manager, called Aiter-R, which can be integrated into existing delta-based iterative processing systems to efficiently support

the execution of delta-based iterative algorithms, by using our proposed group-based iterative execution approach. It can

efficiently and correctly explore the middle ground of the two extremes. A heuristic scheduling algorithm is further proposed

to allow an iterative algorithm to adaptively choose its trade-off point so as to achieve the maximum efficiency. Experimen-

tal results show that Aiter-R strikes a good balance between the synchronous and asynchronous policies and outperforms

state-of-the-art solutions. It reduces the execution time by up to 54.1% and 84.6% in comparison with existing asynchronous

and the synchronous models, respectively.

Keywords iterative algorithm, delta-based execution model, efficiency

1 Introduction

Because many iterative algorithms have been re-

cently proposed to analyze large-scale data in many

domains, such as data mining and scientific computing,

scalable and cheap distributed platforms, e.g., the cloud

infrastructure, become promising platforms to support

large-scale iterative processing. However, because ite-

rative algorithms need to repeatedly handle the same

large-scale data iteration by iteration until the results

satisfy a user-given convergence or stopping condition,

iterative algorithms still suffer from long time to con-

verge on distributed platforms.

For efficient execution of large-scale iterative algo-

Regular Paper

Special Section of Xia Peisu Young Scholars Forum 2021

This paper is supported by the National Natural Science Foundation of China under Grant Nos. 61832006, 61825202, 62072193,
and 61929103.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2022

http://dx.doi.org/10.1007/s11390-022-2101-1

798 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

rithms on distributed platforms, the Delta-based Ite-

rative Execution (DIE) [1–7] model was proposed to re-

duce the execution time of a diverse set of iterative

graph algorithms, or called delta-based iterative algo-

rithms, by exploiting their sparse computational depen-

dencies to avoid processing convergent states and also

reduce synchronization cost. The delta-based iterative

algorithms are the iterative algorithms which can be

correctly executed by using the DIE model. These algo-

rithms are prevalent in Internet applications and scien-

tific computing, etc. The PageRank algorithm [1, 8–10],

for example, is a well-known delta-based iterative al-

gorithm widely used in web search engines. Other ex-

amples, such as adsorption [1, 11] and expected hitting

time [1, 12], can be found in many real-world applications

such as link prediction and recommendation systems.

The Jacobi algorithm [1, 13] is also delta-based and has

been adopted to solve large systems of linear equations

in scientific computing.

The DIE model [1–7] can be executed in either a syn-

chronous or an asynchronous way, while converging to

the same final result. However, the synchronous DIE

model not only needs to process large numbers of state

changes for convergence because of the slow propa-

gation of its (important) state changes, but also suffers

from network jitters [14] and load imbalance [15] in the

distributed platform for strict synchronization between

iterations. The asynchronous DIE model, on the other

hand, uses no barrier and converges more quickly for its

speculative execution, but incurs high redundant com-

munication and computation cost, because it generates

excessive trigger actions, where a trigger action is a user

given function invoked by each state change of the data

item to handle this state change.

We observe that the synchronous DIE model and

the asynchronous DIE model represent two extreme

policies—the former has lower cost but converges more

slowly, while the latter has a faster convergence speed

but incurs higher cost to handle useless trigger actions.

With this observation, we propose a group-based ite-

rative execution model along with a heuristic scheduling

algorithm, which can correctly and efficiently balance

between the cost and benefits of the above two DIE

models. The key idea of our proposed approach is to

adaptively combine a group of state changes for each

data item, and then use an effective scheduling algo-

rithm to determine the optimal processing strategy of

the combined state changes before pushing the results

to the other data items. This approach has two main

advantages. First, it enables delta-based iterative al-

gorithms to efficiently switch between the synchronous

DIE model and the asynchronous DIE model. Second,

it enables much less communication and computation

than the asynchronous model due to fewer trigger ac-

tions, and also faster convergence and lower synchro-

nization cost than the synchronous model. To eva-

luate the efficiency of our approach, we also develop

an efficient execution manager Aiter-R, which can be

integrated into existing delta-based iterative process-

ing systems so as to make them transparently and ef-

ficiently support the execution of delta-based iterative

algorithms. In comparison with the cutting-edge asyn-

chronous DIE model and the synchronous DIE model,

experimental results show that Aiter-R can improve the

performance by up to 2.18 times and 6.52 times, respec-

tively.

In summary, this paper has three contributions.

1) We propose a group-based iterative execution

model that seeks the trade-off between the synchronous

DIE model and the asynchronous DIE model for large-

scale delta-based iterative algorithms. It provides a

means for the delta-based iterative algorithm to tune

the trade-off between the benefits of reduced cost and

the benefits of fast state propagation.

2) We propose a heuristic scheduling algorithm for

each algorithm to further choose its own optimal trade-

off point for maximum efficiency.

3) We design an efficient execution manager, i.e.,

Aiter-R, which can be integrated into existing delta-

based iterative processing systems so as to make them

transparently and efficiently support the execution of

delta-based iterative algorithms.

4) We conduct extensive experiments to demon-

strate its advantages. The results validate the efficiency

of our Aiter-R by the fact that it achieves a higher per-

formance improvement than the existing solutions over

a cluster with 256 cores on 16 nodes.

The remainder of the paper is organized as follows.

Section 2 gives a brief survey of related work. Section 3

and Section 4 describe the motivation and the main

idea of our proposed group-based execution model and

a heuristic scheduling algorithm. Section 5 describes its

implementation details, followed by performance ana-

lysis in Section 6 and a comprehensive experimental

evaluation in Section 7. Section 8 finally concludes the

whole paper.

2 Related Work

With the explosive growth of data, many frame-

works have been recently proposed to support iterative

Hui Yu et al.: High-Performance Delta-Based Iterative Processing with a Group-Based Approach 799

algorithms based on synchronous iterative processing

or asynchronous iterative processing.

Synchronous Iterative Processing Frameworks. To

support iterative algorithms, Twister [16] tries to buffer

the results of each iteration in the main memory aim-

ing to reduce high data access cost in each iteration.

HaLoop [17] also tries to buffer the results to spare

the irregular data access cost using a loop-aware task

scheduler. For efficient data consistency and fault-

tolerance, Piccolo [18] proposes Resilient Distributed

Dataset (RDD). Based on Piccolo, Spark [19] further

proposes and implements more optimizations, which

can efficiently support irregular applications, such as

iterative algorithms. However, these frameworks usu-

ally need global synchronization between iterations for

iterative algorithms and suffer from high synchroniza-

tion cost. Note that a series of dedicated frameworks

are also designed to support iterative algorithms over

graphs. These typical graph processing systems include

Pregel [20], Chaos [21], and Powerlyra [22]. However, they

can only support graph processing, instead of general

iterative algorithms, e.g., Jacobi algorithm [1, 13].

Asynchronous Iterative Processing Frameworks.

Previous work [23–27] shows that many iterative algo-

rithms can also be executed in an asynchronous way

and use the most recent state of data items because the

state updates the other data items within the current

iteration. Thus, the new state of the data item can

be propagated more quickly in this asynchronous way

than in the synchronous way, getting a faster conver-

gence speed. CIEL [28] proposes to construct a dynamic

task graph to support efficient execution of iterative al-

gorithms based on data-flow. Domino [29] provides a

novel programming model along with an efficient run-

time system for iterative algorithms. It can correctly

and efficiently support asynchronous execution of ite-

rative algorithms. Meanwhile, priority scheduling [29, 30]

is also proposed to accelerate the convergence of ite-

rative algorithms instead of using the default round-

robin scheduling algorithm. However, for the unaware-

ness of the sparse computational dependencies in ite-

rative algorithms, these systems, such as Domino, suf-

fer from high runtime overhead. Based on this observa-

tion, the delta-based iterative execution model [1–7] has

been recently proposed to exploit these sparse computa-

tional dependencies for better performance of iterative

algorithms. With the execution model, data items of

iterative algorithms are able to converge only based on

delta data and the results on the previous iteration.

Thus, it enables much low runtime overhead because it

only needs to handle delta data. More importantly,

priority scheduling algorithms [1, 6] can be more effi-

ciently implemented on this delta-based iterative exe-

cution model for better performance of iterative algo-

rithms.

3 Motivation

This section first describes the background and then

discusses the inefficiency of existing solutions.

3.1 Delta-Based Iterative Execution Model

An iterative algorithm can be realized in several

ways. Recent work [1–7] shows that a broad class of ite-

rative algorithms (ranging from PageRank [8] of graph

processing to the Jacobi algorithm [13] of scientific com-

puting) can be correctly executed in the Delta-based

Iterative Execution (DIE) model. These iterative al-

gorithms are called delta-based iterative algorithms,

which are conducted as follows:{
Rn+1 = Rn ⊕∆Rn,
∆Rn+1 = F (∆Rn),

(1)

where F () is a user-defined function and has distribu-

tive property. ⊕ is a user given general sum ope-

ration, which has commutative and associative prop-

erties. Rn = (Rn(1), . . . ,Rn(j)), where Rn(j) is the

j-th element to be processed at the n-th iteration.

∆Rn = (∆Rn(1), . . . ,∆Rn(j)), where ∆Rn(j) is the

state change of the element Rn(j), and Rn+1(j) =

Rn(j) ⊕ ∆Rn(j). R0 and ∆R0 are user-given initial

constant vectors. Different from traditional execution

models that iteratively update the state of a data item

based on the previous states of other data items, the

DIE model updates the state of a data item by only ac-

cumulating state changes of others. By such means,

through employing the sparse computational depen-

dencies, it can efficiently reduce the runtime overhead

caused by the re-computation of data items that have

been converged.

The DIE model can be executed either syn-

chronously or asynchronously. In the synchronous

model, the trigger actions are executed round by round

with a global barrier. In the asynchronous DIE model,

the trigger action is triggered when an element, for ex-

ample Rn(j) of vector Rn, has changed its state. In

other words, a set of workers iteratively process ele-

ments of the vector in an asynchronous way. When a

worker receives a state change ∆Rn(j), it will process

it. The whole process is finished when the user-defined

condition is met, such as ∆Rn+1(j) of all elements of R

800 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

satisfying ‖∆Rn+1(j)‖ < ε (where ε is a user given con-

vergence condition). It has been demonstrated that the

asynchronous DIE model converges to the same results

as the synchronous DIE model. Besides, the process-

ing order of the state change of each element, such as

∆Rn(j), does not affect the convergence results [1]. It

allows us to schedule the processing order of these state

changes. Table 1 lists the notations used in this paper.

Table 1. Description of Notations

Notation Meaning

⊕, ε User-given general sum operation and conver-
gence condition respectively

Rn(j) The j-th element to be processed at the n-th

iteration

G(j) A group containing several state changes

F () User-defined function

∆ State change of the element

τ, Ta Waiting time, a period used in our method re-
spectively

3.2 Inefficiency of Existing Execution Models

However, the above models all suffer from subop-

timal performance. In the following part, we take the

asynchronous PageRank [8] as an example to illustrate

it, where Algorithm 1 describes the trigger action func-

tion of the asynchronous PageRank. For the asyn-

chronous PageRank, each page j accumulates the re-

ceived delta ranking scores of its neighbors (e.g., ∆R(k)

of the page k) and then updates its ranking score R(j).

Then, the delta ranking score ∆R(j) of the page j is

sent to j’s neighbor pages, and ∆R(j) is then set to 0.

Each worker of the distributed environment is assigned

with a set of web pages and updates the ranking scores

of web pages until there are no more trigger actions.

Note that, for other delta-based iterative algorithms,

they have the same problem for the same reasons.

Algorithm 1. Trigger Action of Asynchronous PageRank /*Ex-
ecuted on the worker owning web page j*/

1: procedure User operation(j, ∆R(j))
2: R(j) ← R(j)+∆R(j)
3: if ∆R(j) > ε then
4: links ← look up outlinks of web page j
5: for each link <j, i> ∈ links do
6: ∆R(j) ← d × ∆R(j)/deg(j)
7: /*Propagate ∆R(j) to the worker owing web page
i for its state update. d is the damping factor. deg(j) repre-
sents the degree of j */

8: Diffuse(i, ∆R(j))
9: end for

10: end if
11: end procedure

We now discuss the inefficiency of PageRank with

existing solutions. Assume that two state changes, i.e.,

∆R(j)′ and ∆R(j)′′, are sent to worker 1 from two

other workers, i.e., worker 2 and worker 3. ∆R(j)′

may arrive at worker 1 much later than ∆R(j)′′ due to

network jitters [14], or due to load imbalance between

workers 2 and 3. For the synchronous DIE model,

worker 1 has to wait until the arrival of both ∆R(j)′

and ∆R(j)′′ before processing them and propagating

the results, and it results in much idle time. In the

asynchronous DIE model, the trigger action for the pro-

cessing of ∆R(j)′ and ∆R(j)′′ can be activated when

it is received. Thus, it has no synchronization cost and

can quickly propagate the state change of each data

item to others following it along the directed paths of

the dependency graph of all data items, without having

to wait until the end of the current round. This phe-

nomenon is called cascade effect. Therefore, it can con-

verge more quickly than the synchronous DIE model. In

the asynchronous DIE model, unlike the default round-

robin scheduling algorithm [1], the priority scheduling

algorithm [1, 30] is proposed to schedule the processing

order of state changes according to their importance

with regard to convergence. The priority of each state

change is specified by a user-defined function. For ex-

ample, the priority of ∆R(j) can be evaluated via the

value of ∆R(j) itself. In this way, ∆R(j)′ and ∆R(j)′′

may not be processed until the convergence of the algo-

rithm, when their priorities are small. Then, all trigger

actions caused by them can be spared, getting better

performance.

However, in order to quickly propagate the state

changes of web pages, each state change in the asyn-

chronous DIE model is processed individually and

causes many trigger actions in subsequent iterations.

Such a speculative execution approach may induce

many redundant trigger actions, incurring unnecessary

cost. For example, as described in Fig.1, assume web

page j receives state changes ∆R(j)′ and ∆R(j)′′ from

the web pages 1 and 2, respectively. After the process-

ing of ∆R(j)′, the web page j will propagate its state

change to 1, 2, . . . , 5 and causes trigger actions on them.

Meanwhile, the echoing results from 1 and 2 will again

cause trigger actions on j. This process proceeds until

the termination condition is met, generating many trig-

ger actions. Similarly, ∆R(j)′′ will also cause the state

change of j and its propagation to other web pages. In

this process, ∆R(j)′ and ∆R(j)′′ induce many simi-

lar trigger actions, i.e., redundant trigger actions. In

reality, we can make the web page j wait a moment

Hui Yu et al.: High-Performance Delta-Based Iterative Processing with a Group-Based Approach 801

and combine ∆R(j)′ and ∆R(j)′′ before their process-

ing. Then, many similar actions caused by ∆R(j)′ and

∆R(j)′′ in subsequent iterations are spared.











j

Fig.1. Illustration of redundant trigger actions in asynchronous
DIE.

We can observe that both the synchronous DIE

model and the asynchronous DIE model are two ex-

treme policies and have their limitations: the syn-

chronous model converges slowly, while the asyn-

chronous model has higher redundant computation and

communication cost. It motivates us to investigate

whether and how we can efficiently explore the middle

ground of these two extremes for better performance.

4 Our Approach

From the above discussion, we can also observe that

the unprocessed state changes for the same data item

can be combined before their processing and propa-

gation. Based on this observation, we propose a group-

based iterative execution model that tries to adaptively

combine state changes for each data item before their

processing. It opens an opportunity for the delta-based

iterative algorithm to choose a trade-off point between

the quick state propagation of asynchronous DIE model

and the low runtime cost of synchronous DIE model. A

efficient heuristic scheduling algorithm is also further

proposed to allow the delta-based iterative algorithm

to adaptively and efficiently choose its trade-off points

for the maximum efficiency.

4.1 Group-Based Iterative Execution Model

The proposed group-based iterative execution

model runs as described in Fig.2. When a state change

∆Rj is received, it adds this state change into the re-

lated group G(j) using a user-defined function ⊕, which

is a general sum operation [1]. G(j)= {∆Rk(j)|k =

1, 2, . . .} is a group containing several state changes for

the data item R(j). Meanwhile, the groups are peri-

odically extracted in an asynchronous way. When the

waiting time τ (τ > 0 and its initial value is given by

the user) runs out, several groups are extracted for user-

defined operations (such as Algorithm 1) to process ac-

cording to a scheduling algorithm. In this way, it al-

lows us to efficiently trade off between the synchronous

model and the asynchronous model by only setting τ

and get the maximum efficiency by using a scheduling

algorithm. Note that the asynchronous model is the

special case with τ = 0, while the synchronous one is

the special case with τ=τsyn. There, τsyn is the interval

between two successive iterations for the synchronous

model.

Receive

User Operation

Accumulation

Group Extraction

Scheduling

Fig.2. Dataflow of group-based iterative execution.

The average number of state changes gathered in a

group may be very small under some conditions when

τ is set to a constant. For better performance, we thus

need an adaptive scheme to adjust the value of τ , es-

pecially because the execution environment of the dis-

tributed platforms varies with time. For this goal, we

uses a function B = B(τ) to denote the gained benefits

when τ is a specific value. Then, we can adjust τ to

approximately get a maximum value of B(). Note that

each worker can have its own τ according to its own

execution environment. Frequent adjustment of τ may

cause a high runtime overhead. Therefore, τ in our ap-

proach is adjusted with a period of Ta, considering that

the execution environment changes at different rates for

different algorithms. The value of Ta is given by the

user and is often set larger than τ . If the execution en-

vironment changes frequently, Ta can be set smaller in

order to make the value of τ quickly adapt to the envi-

ronment. Otherwise, Ta is set larger aiming to reduce

802 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

the runtime overhead. After setting Ta, the algorithm

dynamically adjusts τ in the following way. Assume

C(j) is the set of groups that were handled between

the two successive processing times of G(j). The state

changes gathered by a group G(j) are the state changes

sent to this group within the time interval:{
Tinterval(j) = τ × (1 + ξ(j)) + π(j),

π(j) =
∑
t∈C(j) σ(t),

(2)

from its previous processing time, where σ(t) is the time

to process state changes contained in a group G(t), and

ξ(j) is the size of set C(j), i.e., the times that the group

G(j) has been ruled out for processing from its previ-

ous processing. Thus, τ can be increased to make a

group wait longer when fewer state changes have been

gathered. On the contrary, τ can be decreased to re-

duce the waiting time, when sufficient state changes are

gathered.

We can see that the function B = B(τ) only has

one extreme point τmax, and its value B(τmax) is the

maximum value of function B(τ). To find τmax accord-

ing to the change of the execution environment, thus,

it always increases τ with ∆τ (given by the user) af-

ter a period of Ta, and the value of ∆τ is set with its

opposite number when

B(τp + ∆τ) < B(τp), (3)

for the previous adjustment of τ , where B(τp) and

B(τp+∆τ) are the benefits gained in previous two inter-

vals of Ta. Specifically, if deciding to further increase τ

with |∆τ |, it should be expected to get more benefits

after this increment of τ . Otherwise, it decreases τ with

|∆τ | for the new interval. Note that the value of |∆τ |
should be set with a suitable value. Otherwise, it is dif-

ficult to get the value of τmax for τ when it is too large,

or it needs a long time to get τmax for τ when it is too

small. To efficiently get the approximate value of B(τ)

for τ = τp and τ = τp + ∆τ , in practice, we evaluate

B(τ) using the number of state changes processed by

the local worker during the interval of Ta.

4.2 Heuristic Scheduling Algorithm

From (2), we can find that the processing order of

the groups has many important impacts on the value

of ξ(j). It means that the scheduling algorithm of

our model affects the average number of state changes

collected by its groups. Based on this observation, a

heuristic scheduling algorithm is further proposed to

tune the trade-off between the benefits of faster propa-

gation of state changes and the benefits of more gath-

ered state changes within the groups at the cost of more

waiting time.

4.2.1 Factors of Priority Definition

In reality, the above trade-off can be evaluated with

the following two factors.

Importance to Convergence (ITC). ITC(∆Rk(j))

is used to evaluate the importance of a state change

∆Rk(j) on the convergence speed of an iterative algo-

rithm. The privileged processing of the state change

with a larger ITC can accelerate the convergence. It

is because an iterative algorithm may have been con-

verged although many state changes with lower ITC are

not handled. To calculate ITC(∆Rk(j)) with low over-

head, its value can be evaluated according to the value

of ∆Rk(j) itself. It requires the user to specify “±”

with a user-defined function as priority scheduling [30].

Taking the asynchronous PageRank algorithm as an

example, ITC(∆Rk(j)) = +∆Rk(j) because a larger

∆Rk(j) can make it converge more quickly. Therefore,

ITC(G(j)) of a group G(j) can be evaluated with the

sum of ITC of all its state changes, i.e.,{
ITC(G(j)) =

∑
∆Rk(j)∈G(j) ITC(∆Rk(j)),

ITC(∆Rk(j)) = ±∆Rk(j).
(4)

Cost to Grouping (CTG). Before the definition of

CTG, we first discuss the heuristic hint for it. Consi-

dering the algorithm in Subsection 3.2, we assume a

worker has two unprocessed groups G(j) and G(h) with

the same ITC and the scheduler of this worker first se-

lects G(j) to process. However, in the future, it is pos-

sible that the number of trigger actions saved by G(j)

is much larger than that by G(h) because of two rea-

sons. First, the number of state changes combined by

G(j) in the future may be much larger than that of

G(h). Second, the average number of trigger actions

caused by the state changes of G(j) may also be much

larger than that of G(h). Thus, G(j) is processed after

more state changes are gathered. CTG(G(j)) denotes

the total cost of the number of trigger actions spared

by a group G(j) in the future when processing G(j). In

reality, CTG is leveraged to prolong Tinterval(j) and to

gather more state changes by increasing ξ(j) (described

in (2)). CTG(G(j)) can be expressed as

CTG(G(j)) =
∑

∆Rk(j)∈G(j)

Num(∆Rk(j)), (5)

Hui Yu et al.: High-Performance Delta-Based Iterative Processing with a Group-Based Approach 803

where ∆Rk(j) is the state change combined by the

group G(j), and Num(∆Rk(j)) is the number of trig-

ger actions caused by the state change ∆Rk(j) in fu-

ture. To evaluate CTG(G(j)), we also first introduce

two factors.

1) CR(h, j), which is the ratio of the number of

processed state changes to the total number of state

changes needed to be processed at the h-th round for

the j-th element of vector R. Note that a round means

all elements of R are handled once. The value of CR(h,

j) can be approximately calculated as

CR(h, j) =
NP (h, j)

NT (h, j)
, (6)

where NP (h, j) and NT (h, j) are the number of state

changes already processed and the number of state

changes that need to be processed for element R(j) in

the h-th round, respectively. Because NT (h, j) is un-

known in advance and most of the vector R’s elements

have the same NT (h, j), we can approximately treat it

as a constant. Then we can get that

CR(h, j) =
NP (h, j)

T
, (7)

where T is a constant value gained from runtime.

2) RN(∆Rk(j)), which is the round number of state

change ∆Rk(j). It is the number of hops from the ini-

tial state change value of R(j), i.e., ∆R0(j), to ∆Rk(j)

in the dependency graph. The value of RN(∆Rk(j))

is calculated in the following way. RN(∆Rk(j)) is set

with h, if ∆Rk(j) is the processed results of a state

change with RN = h− 1.

Obviously, the number of state changes generated

within the h-th round for the processing of R(j) is de-

pendent on CR(h, j). A round with a smaller CR may

have more unprocessed state changes. Then, more state

changes may arise in this round. In other words, when

a round has a smaller value of CR, a state change is

more likely to come from this round in future. In ad-

dition, because iterative computation is a process of

refinement, the state change with a larger RN causes

fewer trigger actions. Thus, the number of trigger ac-

tions caused by the state change ∆Rk(j) in future is

dependent on RN(∆Rk(j)) and CR(RN(∆Rk(j)), j).

The value of CTG(G(j)) is negatively correlated with

the value of CR and the value of RN and can be ap-

proximately evaluated via

CTG(G(j)) = −
∑

h∈S(j)

h× CR(h, j), (8)

where S(j) = {h|RN(∆Rk(j)) = h
∧

∆Rk(j) ∈
G(j)}.

4.2.2 Priority Definition and Group-Based Scheduling

Based on the values of ITC and CTG, the priority

of each group in our heuristic scheduling algorithm can

be calculated as follows. Because a group with a larger

ITC can accelerate the propagation of important state

changes, the priority of group G(j), i.e., Pri(G(j)),

is set to be positively correlated with the value of

ITC(G(j)). On the other hand, Pri(G(j)) should be

negatively correlated with CTG(G(j)) in order to make

the group with a larger value of CTG wait longer. Then,

it has more opportunities to gather more state changes,

thus reducing the cost of state propagation. Conse-

quently, based on (4), (7), and (8), Pri(G(j)) can be

approximately evaluated in the following linear form for

low profiling overhead.{
Pri(G(j)) =

∑
∆Rk(j)∈G(j) Pri(∆Rk(j)),

P ri(∆Rk(j)) = ITC(∆Rk(j)) + β ×RN(∆Rk(j)),

where β is a constant. When a state change ∆Rk(j) is

gathered by a group G(j), Pri(G(j)) can be efficiently

updated incrementally using the priority of ∆Rk(j).

In this way, the priority of each group can be approxi-

mately obtained in real time. Besides, the unique con-

stant β for the evaluation of Pri(∆Rk(j)) can be easily

set by the user or automatically determined at runtime.

The value of β reflects the trade-off between the ben-

efits from quick state propagation and the benefits of

the spared cost by grouping more states.

For automatic setting of β, the runtime system de-

creases or increases β until its value is suitable, accord-

ing to the profiled average priority of the groups pro-

cessed by it.

5 Implementation of Aiter-R

Existing delta-based iterative processing systems al-

ways distribute the data over the workers of different

nodes for parallel processing. Each worker maintains a

subset of data items and receives state changes to con-

currently update them according to the received state

changes.

To make existing delta-based iterative processing

systems transparently and efficiently support the exe-

cution of delta-based iterative algorithms, an efficient

execution manager Aiter-R is developed by us, which

can be integrated into these existing systems. Each

worker of existing systems has an Aiter-R engine. Each

Aiter-R engine has a local table, called GroupTable. It

is used to manage and schedule the groups, where the

804 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

unprocessed state changes with the same key are put

into the same group. GroupTable is indexed by the key

of each group. Each item of this table contains three

fields: the key value j of a group, the priority value

of this group for scheduling, and the delta value to ac-

cumulate those state changes gathered by this group.

Each Aiter-R engine also has a Group extractor. The

details are described in Algorithm 2. When a new un-

processed state change is received by the accumulator,

it accumulates this state change’s value with the delta

value of a group according to the state change’s key

using the user-given function ⊕ (line 3). Meanwhile,

the priority of this group is updated according to this

state change’s priority in real time with a low overhead

(lines 4 and 5).

Algorithm 2. Details of Group Extractor

1: procedure Accumulator(DataItem j, ∆Rk(j))
2: /*Accumulate ∆Rk(j) into G(j) for j.*/
3: G(j).∆v← G(j).∆v ⊕∆Rk(j)
4: Pri(∆Rk(j))←ITC(∆Rk(j))+β ×RN(∆Rk(j))
5: Pri(G(j))← Pri(G(j)) + Pri(∆Rk(j))
6: end procedure
7: procedure Scheduling algorithm
8: /*Get Ng groups with the highest priorities
9: from the local worker Wl.*/

10: Gset ← GetGroups(Wl, Ng)
11: for each group G(j) ∈ Gset do
12: /*Output the state changes accumulated in
13: group G(j) to the user-defined operation
14: for the processing of the data item R(j).*/
15: Output(j, G(j).∆v)
16: end for
17: end procedure

To efficiently assign the processing order of the

groups owned by each Aiter-R engine, it also has a

scheduler. When the waiting time has elapsed, the

scheduler selects several highest priority groups and

outputs them to the user-defined operation, e.g., the

function described in Algorithm 1, so as to allow them

to be first processed by existing systems integrated with

Aiter-R.

To reduce the cost caused by frequent group extrac-

tion, we make Aiter-R engine on each worker extract

an adjustable number of groups each time. In this way,

it can trade off between the benefits of prioritized exe-

cution and the runtime overhead by adjusting the num-

ber of groups extracted each time, i.e., Ng.

In reality, as described in Algorithm 3, we ap-

proximately extract the top Ng records by sorting the

samples, where N is the number of groups stored in

GroupTable. The idea behinds this algorithm is that

the priority distribution in a small set of samples in re-

ality can reflect the status of GroupTable. In this way,

it only takes O(N) cost to extract the top Ng groups

rather than O(N × logN). Note that the number of

samples, i.e., s, is also important to the performance.

A large smay introduce high runtime cost, while a small

one may reduce the benefits gained from prioritization.

Algorithm 3. Get Groups with the Highest Priorities

1: procedure GetGroups(Worker W , Ng)
2: /*Randomly select s(s� N) records.*/
3: Setsample ← RandomGet(W .GroupTable)
4: /*Sort samples in priority-descending order.*/
5: Descending(Setsample)
6: /*Use threshold Tt to extract Ng groups
7: with the largest priority.*/

8: Tt ← Pri(Setsample[
s×Ng

N
])

9: for each G(j)∈ W .GroupTable do
10: if Pri(G(j))> Tt and Ng > 0 then
11: /*Insert G(j) into group set Gset.*/
12: InsertGroup(Gset, G(j))
13: Ng ← Ng − 1
14: end if
15: end for
16: Return Gset

17: end procedure

Now, we analyze the optimal value of Ng that gives

the best performance. The execution time of asyn-

chronous iterative computation is composed of two

parts: the time to process trigger actions and the run-

time cost. We derive these two parts as follows. First,

let f(Ng) be the total number of trigger actions needed

for convergence when the number of groups extracted

each time is set to Ng. Let Tp be the average processing

time of each trigger action, including the time for com-

putation and the time for communication. Thus, the to-

tal time spent on handling trigger actions is f(Ng)×Tp.
Second, the overhead time is dominated by the time

used to extract groups from GroupTable, which is lin-

ear with the size of GroupTable, i.e., N . Let To be the

average time to scan a record in GroupTable. Then,

the total overhead time in asynchronous iterative com-

putation is
f(Ng)
Ng
×N ×To, where

f(Ng)
Ng

is the times to

extract groups. Because f(Ng) can be approximately

estimated as a linear function of Ng, we can get the total

execution time Ttotal of asynchronous iterative compu-

tation as follows: Ttotal = f(Ng)× Tp +
f(Ng)

Ng
×N × To,

f(Ng) = α×Ng + θ.

Therefore, to get the minimum value of Ttotal, we have

Ng = (θ×N×To

α×Tp
)1/2, where the value of Ng can be pro-

vided by the user or be set at runtime. Section 7 gives

the performance of benchmarks with different values of

Hui Yu et al.: High-Performance Delta-Based Iterative Processing with a Group-Based Approach 805

Ng and demonstrates that it can improve the perfor-

mance over a wide range of Ng. To set Ng at runtime,

it needs to get To, Tp, α, and θ. To and Tp can be gained

by profiling the execution of the previous iteration, and

α and θ can be estimated by online analysis as well.

Specifically, it can use the above sampling method to

approximate the total number of trigger actions, i.e.,

f(Ng), needed for convergence of the whole dataset by

only evaluating the number of trigger actions for the

samples. Then, α and θ can be calculated by resolving

two linear equations about α and θ.

6 Performance Analysis

This section gives an analysis of different execution

models. In reality, the execution time of different

schemes of the DIE model all can be evaluated via

Ttotal = Ttrigger + Tcost,

where Ttrigger is the time to process the trigger actions

needed for convergence and Tcost is the runtime over-

head. Because the processing time of each trigger action

is the same, then

Ttotal = Tp ×Ntrigger + Tcost,

where Ntrigger is the number of trigger actions needed

for convergence and Tp is the processing time of each

trigger action, including the time for both computation

and communication.

Assume the priority asynchronous approach needs

N
(2)
trigger trigger actions for convergence. Then the cost

is

T
(2)
cost = To ×N ×

N
(2)
trigger

Ng
,

at least, where Ng is the number of data items extracted

each time and To is the average time for scanning a

record in the table with size N . Thus, the total exe-

cution time of the priority asynchronous approach is

T
(2)
total = Tp ×N (2)

trigger + T
(2)
cost

= Tp ×N (2)
trigger ×

(
1 + To ×

N

Tp ×Ng

)
.

The approximate execution time of the round robin

asynchronous approach is

T
(3)
total = Tp ×N (3)

trigger + To ×N (3)
trigger

= Tp ×N (3)
trigger ×

(
1 +

To
Tp

)
,

where N
(3)
trigger is the number of trigger actions needed

for its convergence. N
(3)
trigger is usually larger than

N
(2)
trigger because the priority asynchronous way con-

verges quicker than the round robin asynchronous

way [1].

However, the number of trigger actions needed for

the convergence of our approach is only N
(1)
trigger, where

N
(2)
trigger

NGroup
< N

(1)
trigger <

N
(3)
trigger

NGroup
,

andNGroup is the average number of state changes gath-

ered in each group of our approach. The runtime over-

head of our approach is

T
(1)
cost = (τ + To ×N)×

N
(1)
trigger

Ng
,

where Ng is the number of groups extracted each time

and To is the average time to scan a record in the

GroupTable with the size of N . Therefore, the total

execution time of our approach is

T
(1)
total = Tp ×N (1)

trigger ×
(

1 +
τ + To ×N
Tp ×Ng

)
.

It means that

T
′(2)
total < T

(1)
total < T

′(3)
total,

where

T
′(2)
total = T

(2)
total ×

1 + τ
Tp×Ng+To×N

NGroup
,

and

T
′(3)
total = T

(3)
total ×

Tp ×Ng + To ×N + τ

(Tp ×Ng + To ×Ng)×NGroup
.

On the other hand, assume Lmax and Lavg are the

maximum and the mean computation load of all work-

ers, respectively. Then, the computational imbalance

degree λL can be expressed as

λL =
Lmax

Lavg
− 1.

Then, the total execution time of the synchronous ap-

proach is

T
(4)
total = Tp ×N (4)

trigger × (1 + λL) + T
(4)
cost

= Tp ×N (4)
trigger × (1 + λL) + To ×N (4)

trigger

= Tp ×N (4)
trigger ×

(
1 + λL +

To
Tp

)
,

806 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

where N
(4)
trigger is the number of trigger actions needed

for convergence and is usually larger than N
(2)
trigger be-

cause the asynchronous approach can propagate a new

state of the data item more quickly [1].

In summary, by comparing the total execution time

of each execution model, we can conclude that our exe-

cution model is superior to the other execution mod-

els, i.e., the total time spent by our execution model

is the lowest, because our approach can propagate the

new state of the data item more efficiently. Therefore,

we theoretically demonstrate the effectiveness of our

method.

7 Experimental Evaluation

The hardware platform is a cluster with 16 nodes,

where each node has two octuple-cores Intelr Xeonr

E5-2670 CPUs at 2.60 GHz with 64 GB memory, run-

ning a Linux operation system with kernel version

2.6.32. The nodes are interconnected by a 2-Gigabit

Ethernet. Each node spawns 16 workers to run the

benchmarks. The algorithms are compiled by gcc

v4.7.2. Four typical benchmarks from data mining and

scientific computing are implemented:

1) RISMF [31], which is used to profile the relation-

ships between users and items in a recommender sys-

tem;

2) PageRank [8], which is a popular algorithm to

rank web pages;

3) Adsorption [11], which is a graph-based label

propagation algorithm and provides personalized rec-

ommendation for contents;

4) Jacobi algorithm [13], which is employed to solve

linear equations in scientific computation.

Table 2 shows the datasets used for these bench-

marks. The first three datasets are real-world

ones 1○− 3○ and the fourth one is a generated sparse ma-

trix as Maiter [1].

Table 2. Statistics of Dataset

Benchmark Dataset

RISMF 1○ Rows: 1.8 million; columns: 0.136 million

PageRank 2○ Nodes: 3.5 billion; edges: 128.7 billion

Adsorption 3○ Nodes: 133.6 million; edges: 5.5 billion

Jacobi algorithm 3○ Rows: 1 million; columns: 1 million

In order to evaluate the performance of our ap-

proach and also understand the advantages of our ap-

proach, Aiter-R is integrated with Maiter and then is

compared with the following four schemes implemented

on Maiter. They differ only in the execution model and

the scheduling algorithm. Note that we still call the

version of Maiter integrated with Aiter-R as Aiter-R in

the following experiments:

1) Asyn-RR: the asynchronous DIE model with

round robin scheduling [1], which is the default schedul-

ing algorithm;

2) Asyn-Pri: the asynchronous DIE model with pri-

ority scheduling [1], which is the scheme employing ITC

as the priority and the value of ITC is specified by a

user-defined function;

3) Syn-with/Syn-without: the synchronous DIE

model [1] with or without a combiner, respectively;

4) Group-RR: the group-based iterative execution

model with round robin scheduling.

Note that we choose Maiter because it is demon-

strated to outperform other existing systems for the

execution of delta-based iterative algorithms [1]. In ad-

dition, Aiter-R is also compared with other cutting-

edge systems, i.e., Spark v3.2.0 [19] and Domino [29],

which support iterative processing on distributed plat-

forms. Their performance is tried to be tuned to be

the best. In the experiments, for Aiter-R, we set

β = 5 × 10−5, |∆τ | = 0.000 5 and Ta = 0.5,
Ng√
N

= 20

and s = 1 000 for both PageRank and Adsorption,

where N is the number of data items processed by diffe-

rent benchmarks. In Aiter-R,
Ng√
N

and s are set to 4 and

200 for the RISMF and Jacobi algorithm respectively.

All experimental results are the average of 10 repetitive

runs.

7.1 Number of Trigger Actions for

Convergence

First, we evaluate the impacts of the two factors,

i.e., ITC and CTG, on the reduction of the number of

triggered actions. To get this goal, we first set β = 0

and then evaluate how many trigger actions can be re-

duced with only ITC. We then evaluate the influence

of CTG in a similar way by setting β to its maximum

in order to ignore the impact of ITC. The results are

normalized with respect to their sum and presented

in Fig.3. From this figure, we have two observations.

First, ITC and CTG are both important to the reduc-

tion of redundant trigger actions. Taking the RISMF

1○http://webscope.sandbox.yahoo.com/catalog.php?datatype=r, Apr. 2022.
2○http://webdatacommons.org/hyperlinkgraph/, Apr. 2022.
3○http://law.di.unimi.it/datasets.php, Apr. 2022.

Hui Yu et al.: High-Performance Delta-Based Iterative Processing with a Group-Based Approach 807

algorithm as an example, only taking ITC and CTG as

the factor of the priority reduces the number of trigger

actions by up to 51.1% and 48.9%, respectively. Second,

we can observe that ITC always reduces more trigger

actions than CTG for the four benchmarks. It means

that ITC is more important than CTG on the reduction

of trigger actions.

RISMF PageRank Adsorption Jacobi
0

10

20

30

40

50

60

70

Benchmark

 ITC CTG

R
a
ti
o
 o

f
R

e
d
u
c
e
d
 T

ri
g
g
e
r

A
c
ti
o
n
s

(%
)

Fig.3. Ratio of saved trigger actions by using only ITC or CTG
as priority, respectively.

Fig.4 depicts the number of trigger actions needed

by different schemes for convergence normalized to the

number of trigger actions needed by Asyn-RR. We can

observe that the synchronous approach needs much

more trigger actions than the asynchronous approach,

because the latter can propagate the new value of the

data item more quickly to help convergence. Taking

the RISMF algorithm as an example, the trigger ac-

tions needed by Syn-without are 4.56 times as many as

those by Asyn-RR. Meanwhile, we can observe that, in

the Jacobi algorithm, 86.0% of trigger actions of Syn-

without can be reduced by Syn-with. It means that a

combiner can be used in the synchronous approach so

as to reduce trigger actions for better performance.

Fig.4 also shows that Asyn-Pri can dramatically re-

duce the number of trigger actions needed for the con-

vergence of Asyn-RR. Taking the Jacobi algorithm as

an example, Asyn-Pri can reduce the number of trig-

ger actions of Asyn-RR up to 67.2%. It is because

that the most important state changes with regard to

its convergence are more quickly propagated by the

priority scheduling algorithm of Asyn-Pri in compa-

rison with Asyn-RR. As a result, Asyn-Pri can con-

verge faster than Asyn-RR. Meanwhile, as shown in

the figure, Asyn-Pri still has more trigger actions than

Aiter-R. Taking RISMF as an example, Aiter-R can re-

duce 73.5% of the trigger actions of Asyn-Pri. It mainly

has two reasons. First, state changes for the same data

item can be effectively grouped and processed together

in Aiter-R. To demonstrate it, we have also evaluated

the number of trigger actions needed by Group-RR. For

the Jacobi algorithm, it can be observed that 63.8%

of the trigger actions needed by Asyn-RR are spared

by Group-RR. Second, many trigger actions can be re-

duced by our proposed scheduling method. For exam-

ple, Aiter-R only needs 25.4% of the trigger actions of

Group-RR in the Jacobi algorithm.

RISMF PageRank Adsorption Jacobi
0

1

2

3

4

5

Benchmark

 Asyn-RR

 Syn-without

 Asyn-Pri

 Syn-with

 Aiter-R

 Group-RR

R
e
la

ti
v
e
 N

u
m

b
e
r

o
f
T
ri
g
g
e
r

A
c
ti
o
n
s

Fig.4. Number of trigger actions needed for convergence under
different schemes normalized to that of Asyn-RR.

Finally, Table 3 shows the convergence condition of

Aiter-R and Asyn-RR on different benchmarks by pro-

filing the time of them to get a fixed value of ED. Note

that ED is the Euclidean distance between the result

vector of Aiter-R or Asyn-RR and that of Syn-without.

From this table, we can observe that Aiter-R converges

to the same final result as Asyn-RR and Syn-without

in a faster way.

Table 3. Convergence Time (s) of Asyn-RR and Aiter-R on Different Algorithms

ED RISMF PageRank Adsorption Jacobi Algorithm

Asyn-RR Aiter-R Asyn-RR Aiter-R Asyn-RR Aiter-R Asyn-RR Aiter-R

10−1 168.9 53.7 64.9 34.9 42.1 20.0 334.4 133.1
10−2 383.0 119.3 150.0 76.7 94.7 43.8 730.4 279.7
10−3 830.1 250.6 337.9 166.5 205.2 92.0 1 531.2 559.9
10−4 1 695.8 501.2 699.2 333.4 423.4 182.5 3 107.2 1 062.8
10−5 3 373.2 977.9 1 366.8 633.6 808.7 346.2 5 788.4 1 913.4

808 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

7.2 Runtime Overhead

Fig.5 shows the execution time breakdown of Asyn-

RR, Asyn-Pri and Aiter-R. Although the overhead (i.e.,

the time spent on non-computational tasks) occupies

78.7% of the total execution time of Aiter-R, significant

reduction of trigger actions yet is obtained by Aiter-R

as the following discussed. Note that Aiter-R needs

much lower runtime overhead than Asyn-Pri. Fig. 6

shows the computational overhead of different schemes,

where the time to handle redundant trigger actions is

not included in this computational overhead. Fig. 6

shows that the computational overheads of Syn-with is

less than that of Asyn-RR. For example, in the Jacobi

algorithm, the computational overhead of Syn-with is

only 61.5% of that of Asyn-RR. Meanwhile, we find

that Domino also suffers from higher runtime overhead

than Asyn-RR because Domino is based on a costly dis-

tributed locking engine. In RISMF, the computational

overhead of Domino is 8.03 times higher than that of

Asyn-RR.

In addition, from Fig.6, we see that Asyn-Pri has a

higher overhead than Asyn-RR in scheduling the pro-

cessing order according to the importance of different

trigger actions with regard to its convergence. For

the Jacobi algorithm, Asyn-Pri has a 4.81 times higher

computational overhead than Asyn-RR. In the Jacobi

algorithm for example, the computational overhead of

Asyn-Pri is 1 950.7 seconds, while it is only 1 418.1 sec-

onds for Aiter-R. Meanwhile, we can find that the com-

putational overhead of the data item extraction algo-

rithm in Asyn-Pri is high. For example, the computa-

tional overhead of Group-RR is only 694.5 seconds for

the Jacobi algorithm.

Asyn-RR

Asyn-Pri

Aiter-R

Asyn-RR

Asyn-Pri

Aiter-R

Asyn-RR

Asyn-Pri

Aiter-R

Asyn-RR

Asyn-Pri

Aiter-R

0 10 20 30 40 50 60 70 80 90 100

Ja
co
bi

A
ds
or
pt
io
n

P
ag

eR
an

k

R
IS
M
F

Ratio (%)

 Time of Additional Overhead

 Time of Trigger Action Processing

B
e
n
c
h
m

a
rk

Fig.5. Execution time breakdown of Asyn-RR, Asyn-Pri and
Aiter-R.

RISMF PageRank Adsorption Jacobi

0

2

4

6

8

10

12

14

16

18

20

Benchmark

 Asyn-RR Asyn-Pri Aiter-R

 Syn-with Group-RR Domino

A
d
d
it
io

n
a
l
C

o
m

p
u
ta

ti
o
n
a
l

O
v
e
rh

e
a
d
 (

s)

Τ102

Fig.6. Computational overheads of different schemes.

Finally, the communication overhead of different

schemes is evaluated. Fig. 7(a) and Fig. 7(b) present

the volume of traffic and the number of communication

operations for different schemes normalized to that of

RISMF PageRank Adsorption Jacobi
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Benchmark

 Asyn-RR Asyn-Pri Aiter-R

 Syn-with Group-RR Domino

RISMF PageRank Adsorption Jacobi
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Benchmark

 Asyn-RR Asyn-Pri Aiter-R

 Syn-with Group-RR Domino

R
e
la

ti
v
e
 T

ra
ff
ic

 V
o
lu

m
e

R
e
la

ti
v
e
 N

u
m

b
e
r

o
f

C
o
m

m
u
n
ic

a
ti
o
n
 O

p
e
ra

ti
o
n
s

(b)(a)

Fig.7. Communication overheads of different schemes normalized to that of Asyn-RR. (a) Traffic volume. (b) Number of communication
operations.

Hui Yu et al.: High-Performance Delta-Based Iterative Processing with a Group-Based Approach 809

Asyn-RR respectively. We can observe that, for the

Jacobi algorithm, Aiter-R can reduce both the volume

of traffic and the number of communication operations

by up to 71.6% in comparison with Asyn-Pri, and by

up to 90.6% in comparison with Asyn-RR due to much

fewer trigger actions. It also means that Aiter-R has

better scalability for lower communication cost. Mean-

while, we see that the synchronous approach can reduce

the number of communication operations. Taking Ad-

sorption as an example, the number of communication

operations needed by Syn-with is only 21.4% of that by

Asyn-RR, and the traffic volume of Syn-with is 72.1%

of that of Asyn-RR.

7.3 Execution Time

In Fig.8, we have also evaluated the performance of

Aiter-R on a platform of AliCloud with 80 Gbps net-

work and 32 nodes. Fig.8 and Fig.9 give the execution

time of the benchmarks by using different schemes. It

can be observed that the synchronous approach per-

forms worse than the asynchronous approach because

of a slower convergence speed and more significant load

imbalance (a worker in the synchronous approach may

even take 3.58 times as much load as the average load

of all workers). For example, the execution time of

the Jacobi algorithm is as long as 11 891.5 seconds for

Syn-with, although it uses combiners to reduce network

traffic. However, with Asyn-RR, the Jacobi algorithm

only needs 5 788.4 seconds, because the asynchronous

approach requires much fewer trigger actions to con-

verge than the synchronous method, and also has no

synchronization cost.

RISMF PageRank Adsorption Jacobi

0

50

100

150

200

250

300

Benchmarks

 Asyn-RR Asyn-Pri Aiter-R

 Syn-with Group-RR

 Domino Spark

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

Fig.8. Execution time of different schemes on AliCloud.

RISMF PageRank Adsorption Jacobi
0

1

2

3

4

5

6

7

8

9

10

11

12

13

Benchmarks

Asyn-RR Asyn-Pri Aiter-R

Syn-with Group-RR

Domino Spark

E
x
e
c
u
ti
o
n
 T

im
e
 (

s)

Τ103

Fig.9. Execution time of different schemes on 16 nodes cluster.

However, Asyn-RR still performs poorly due to

many redundant trigger actions. For the Jacobi al-

gorithm, Asyn-Pri only needs 3 716.7 seconds, while

Aiter-R even only takes 1 913.4 seconds because of the

reduction of redundant trigger actions with low over-

head. In other words, Aiter-R achieves a speedup of

1.94 and 3.03 in comparison with Asyn-Pri and Asyn-

RR, respectively. For the RISMF algorithm, Aiter-R

can even improve the performance of Asyn-Pri by 2.18

times and that of Syn-with by 6.52 times. There are two

main reasons for the superior performance of Aiter-R in

comparison with the above two asynchronous execution

schemes, namely Asyn-RR and Asyn-Pri. First, the

adaptive group scheme of Aiter-R can be used to spare

many trigger actions. As shown in Fig.9, the execution

time of the RISMF algorithm is only 1 644.1 seconds for

Group-RR, while 3 373.2 seconds for Asyn-RR. It also

means that the benefit from our group-based approach

is still much more than the overhead caused by it. Sec-

ond, from Fig.9, we can observe that the scheduling

algorithm of Aiter-R can further improve the perfor-

mance because of significantly reduced trigger actions

for faster state propagation, although it incurs higher

runtime overhead. For example, the execution time of

the RISMF algorithm over Aiter-R is only 977.9 sec-

onds, much lower than 1 644.1 seconds over Group-RR.

Aiter-R is also compared with two state-of-the-art

systems, i.e., Domino and Spark. As shown in Fig.9,

both Domino and Spark suffer from poorer performance

than Aiter-R. Domino has high runtime overhead in re-

alizing its execution model with a costly distributed

locking engine. Spark suffers from a slow convergence

speed and high synchronization cost because of its

global barrier between iterations. Therefore, Aiter-R

810 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

can improve the performance of RISMF by up to 5.32

times and 6.67 times in comparison with Domino and

Spark, respectively, yet with the same accuracy of re-

sults. Finally, Fig.10 also evaluates the scalability of

Aiter-R. Fig.10 shows that Aiter-R can achieve good

scalability. It is because Aiter-R can spare much com-

munication cost caused by redundant trigger actions.

16 32 64 128 256
0

2

4

6

8

10

12

14

16

18

Number of Cores

 RISMF PageRank Adsorption
 Jacobi Ideal

S
p
e
e
d
u
p

Fig.10. Scalability of Aiter-R for various cores.

7.4 Impacts of Various Parameters

Fig.11(a) gives the performance of Aiter-R normal-

ized to that of Group-RR with different values of Ng.

This figure shows that too large Ng may degrade the

benefits of the scheduling algorithm of Aiter-R. In the

extreme case, i.e., the value of Ng is the same as the

size of GroupTable, no benefits will be gotten from the

scheduling algorithm for the iterative computation. On

the other hand, setting Ng too small may lead to fre-

quent group extraction, which incurs considerable run-

time overhead. In addition, as shown in Fig.11(a), we

can observe that, over a wide range of Ng, the method

that more benefits are gotten by the extraction of top

groups with the highest priorities than by randomly

outputting Ng groups without considering any priority.

It is because that Aiter-R can more efficiently propa-

gate state changes than Group-RR and accelerate its

convergence speed. Meanwhile, more state changes can

be gathered in each group for data items of Aiter-R,

reducing the communication and computation cost of

Group-RR.

In order to show the impact of sample rate s on

the performance of Aiter-R, Fig.11(b) shows the exe-

cution time of Aiter-R with different values of s nor-

malized to that of the baseline condition with s = 40.

Note that, for the baseline, the execution time of the

0.16 0.80 4.00 20.00 100.00 500.00

0.4

0.6

0.8

1.0

1.2

1.4

Ng/sqrt(N)

 RISMF PageRank

 Adsorption Jacobi

0.04 0.20 1.00 5.00 25.00 125.00

0.4

0.6

0.8

1.0

1.2

1.4

1.6

s

 RISMF PageRank

 Adsorption Jacobi

0 1 5 25 125 625

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

β

 RISMF PageRank

 Adsorption Jacobi

(Τ103
)

R
e
la

ti
v
e
 E

x
e
c
u
ti
o
n
 T

im
e

A
g
a
in

st
 G

ro
u
p
-
R

R

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

(b)(a)

(c)

(Τ10-5
)

Fig.11. Impacts of (a) Ng , (b) s and (c) β on the performance of Aiter-R.

Hui Yu et al.: High-Performance Delta-Based Iterative Processing with a Group-Based Approach 811

RISMF, PageRank, Adsorption, and Jacobi algorithms

is 1 627.1, 807.1, 493.1, and 2 907.9 seconds, respec-

tively. We can find a phenomenon that too small s

may degrade the effect of prioritization. On the other

hand, it may incur considerable overhead to arrange

the samples. Fig.11(c) depicts the execution time of

Aiter-R with different values of β normalized to that of

the baseline condition with β = 0, where the execution

time of the RISMF, PageRank, Adsorption, and Jacobi

algorithms is 1 210.2 s, 660.6 s, 396.1 s, and 2 057.4 s,

respectively. Fig.11(c) shows that whether the para-

meter β is set too large or too small will may lead to

performance losses. It is because β represents a trade-

off between the gain from quick state propagation and

the benefits of cost reduction by more aggressive state

grouping. Finally, Table 4 also shows the impacts of Ta
and ∆τ on the performance of Aiter-R. We can observe

that either too small or too large value of both Ta and

∆τ may result in worse performance for Aiter-R.

Table 4. Impacts of Ta and ∆τ on the Execution Time (s) of
PageRank under Aiter-R

Ta |∆τ |

0.000 1 0.000 5 0.002 5 0.012 5

0.10 648.4 652.5 667.6 684.2

0.25 642.5 642.2 655.9 672.5

0.50 646.8 633.6 647.0 661.7

1.00 655.2 640.3 647.7 660.1

8 Conclusions

This paper proposed a group-based iterative exe-

cution model, along with an efficient heuristic schedul-

ing algorithm, to efficiently support large-scale delta-

based iterative algorithms on the distributed platforms.

Comprehensive experimental results showed that our

approach achieves better performance than existing so-

lutions. In the future, we will investigate how to effi-

ciently optimize our approach to support the processing

of large-scale streaming data.

References

[1] Zhang Y, Gao Q, Gao L, Wang C. Maiter: An asyn-

chronous graph processing framework for delta-based ac-

cumulative iterative computation. IEEE Transactions on

Parallel and Distributed Systems, 2014, 25(8): 2091-2100.

DOI: 10.1109/TPDS.2013.235.

[2] Gonzalez J E, Low Y, Gu H, Bickson D, Guestrin C. Pow-

erGraph: Distributed graph-parallel computation on nat-

ural graphs. In Proc. the 10th USENIX Symposium on

Operating Systems Design and Implementation, Oct. 2012,

pp.17-30.

[3] Mihaylov S R, Ives Z G, Guha S. REX: Recur-

sive, delta-based data-centric computation. Proc. the

VLDB Endowment, 2012, 5(11): 1280-1291. DOI:

10.14778/2350229.2350246.

[4] Yu W, Lin X, Zhang W. Fast incremental SimRank on

link-evolving graphs. In Proc. the 30th IEEE International

Conference on Data Engineering, Mar. 31-Apr. 4, 2014,

pp.304-315. DOI: 10.1109/ICDE.2014.6816660.

[5] Zhang Y, Chen S, Wang Q, Yu G. i2MapReduce: Incremen-

tal MapReduce for mining evolving big data. IEEE Trans-

actions on Knowledge and Data Engineering, 2015, 27(7):

1906-1919. DOI: 10.1109/TKDE.2015.2397438.

[6] Zhang Y, Liao X, Jin H, Gu L, Zhou B B. FBSGraph:

Accelerating asynchronous graph processing via forward

and backward sweeping. IEEE Transactions on Know-

ledge and Data Engineering, 2018, 30(5): 895-907. DOI:

10.1109/TKDE.2017.2781241.

[7] Zhang Y, Liao X, Shi X, Jin H, He B. Efficient disk-

based directed graph processing: A strongly connected

component approach. IEEE Transactions on Parallel

and Distributed Systems, 2018, 29(4): 830-842. DOI:

10.1109/TPDS.2017.2776115.

[8] Hou G, Chen X, Wang S, Wei Z. Massively para-

llel algorithms for personalized PageRank. Proc. the

VLDB Endowment, 2021, 14(9): 1668-1680. DOI:

10.14778/3461535.3461554.

[9] Chen H, Jin H, Cui X. Hybrid followee recommenda-

tion in microblogging systems. Science China Informa-

tion Sciences, 2017, 60(1): Article No. 012102. DOI:

10.1007/s11432-016-5551-7.

[10] Liao X, Chen Y, Zhang Y et al. An efficient incremental

strongly connected components algorithm for evolving di-

rected graphs. Scientia Sinica Informationis, 2019, 49(8):

988-1004. DOI: 10.1360/N112018-00125. (in Chinese)

[11] Baluja S, Seth R, Sivakumar D et al. Video suggestion

and discovery for YouTube: Taking random walks through

the view graph. In Proc. the 17th International Confe-

rence on World Wide Web, Apr. 2008, pp. 895-904. DOI:

10.1145/1367497.1367618.

[12] Liben-Nowell D, Kleinberg J. The link prediction problem

for social networks. In Proc. the 12th International Confe-

rence on Information and Knowledge Management, Nov.

2003, pp.556-559. DOI: 10.1145/956863.956972.

[13] Shroff G M. A parallel algorithm for the eigenval-

ues and eigenvectors of a general complex matrix.

Numerische Mathematik, 1990, 58(1): 779-805. DOI:

10.1007/BF01385654.

[14] Zhang Y, Liao X, Jin H, Min G. Resisting skew-

accumulation for time-stepped applications in the

cloud via exploiting parallelism. IEEE Transac-

tions on Cloud Computing, 2015, 3(1): 54-65. DOI:

10.1109/TCC.2014.2328594.

[15] Zhang Y, Liao X, Jin H, Tan G, Min G. Inc-part: In-

cremental partitioning for load balancing in large-scale

behavioral simulations. IEEE Transactions on Parallel

and Distributed Systems, 2015, 26(7): 1900-1909. DOI:

10.1109/TPDS.2014.2333511.

https://doi.org/10.1109/TPDS.2013.235
https://doi.org/10.14778/2350229.2350246
https://doi.org/10.1109/ICDE.2014.6816660
https://doi.org/10.1109/TKDE.2015.2397438
https://doi.org/10.1109/TKDE.2017.2781241
https://doi.org/10.1109/TPDS.2017.2776115
https://doi.org/10.14778/3461535.3461554
https://doi.org/10.1007/s11432-016-5551-7.
https://doi.org/10.1360/N112018-00125
https://doi.org/10.1145/1367497.1367618
https://doi.org/10.1145/956863.956972
https://doi.org/10.1007/BF01385654.
https://doi.org/10.1109/TCC.2014.2328594
https://doi.org/10.1109/TPDS.2014.2333511

812 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

[16] Ekanayake J, Li H, Zhang B, Gunarathne T, Bae S, Qiu

J, Fox G. Twister: A runtime for iterative MapReduce.

In Proc. the 19th ACM International Symposium on High

Performance Distributed Computing, Jun. 2010, pp.810-

818. DOI: 10.1145/1851476.1851593.

[17] Bu Y, Howe B, Balazinska M, Ernst M D. HaLoop: Ef-

ficient iterative data processing on large clusters. Proc.

the VLDB Endowment, 2010, 3(1): 285-296. DOI:

10.14778/1920841.1920881.

[18] Power R, Li J. Piccolo: Building fast, distributed programs

with partitioned tables. In Proc. the 9th USENIX Confe-

rence on Operating Systems Design and Implementation,

Oct. 2010, pp.293-306.

[19] Zaharia M, Chowdhury M, FranklinM J, Shenker S, Stoica

I. Spark: Cluster computing with working sets. In Proc. the

2nd USENIX Workshop on Hot Topics in Cloud Comput-

ing, Jun. 2010.

[20] Malewicz G, Austern M H, Bik A J C, Dehnert J C, Horn

I, Leiser N, Czajkowski G. Pregel: A system for large-scale

graph processing. In Proc. the 2010 ACM SIGMOD Inter-

national Conference on Management of Data, Jun. 2010,

pp.135-146. DOI: 10.1145/1807167.1807184.

[21] Roy A, Bindschaedler L, Malicevic J, Zwaenepoel

W. Chaos: Scale-out graph processing from sec-

ondary storage. In Proc. the 25th Symposium on Ope-

rating Systems Principles, Oct. 2015, pp.410-424. DOI:

10.1145/2815400.2815408.

[22] Chen R, Shi J, Chen Y, Chen H. PowerLyra: Differentiated

graph computation and partitioning on skewed graphs. In

Proc. the 10th European Conference on Computer Systems,

Apr. 2015, Article No. 1. DOI: 10.1145/2741948.2741970.

[23] Chazan D, Miranker W. Chaotic relaxation. Linear Al-

gebra and Its Applications, 1969, 2(2): 199-222. DOI:

10.1016/0024-3795(69)90028-7.

[24] Baudet G M. Asynchronous iterative methods for multipro-

cessors. Journal of the ACM, 1978, 25(2): 226-244. DOI:

10.1145/322063.322067.

[25] Bertsekas D P. Distributed asynchronous computation of

fixed points. Mathematical Programming, 1983, 27(1): 107-

120. DOI: 10.1007/BF02591967.

[26] Liu H K, Chen D, Jin H, Liao X F, He B S, Hu K, Zhang

Y. A survey of non-volatile main memory technologies:

State-of-the-arts, practices, and future directions. Journal

of Computer Science and Technology, 2021, 36(1): 4-32.

DOI: 10.1007/s11390-020-0780-z.

[27] Lv X Q, Xiao W, Zhang Y, Liao X F, Jin H, Hua S Q. An ef-

fective framework for asynchronous incremental graph pro-

cessing. Frontiers of Computer Science, 2019, 13(3): 539-

551. DOI: 10.1007/s11704-018-7443-z.

[28] Murray D G, Schwarzkopf M, Smowton C, Smith S, Mad-

havapeddy A, Hand S. CIEL: A universal execution en-

gine for distributed data-flow computing. In Proc. the 8th

USENIX Conference on Networked Systems Design and

Implementation, Mar. 30-Apr. 1, 2011, pp.113-126.

[29] Dai D, Chen Y, Kimpe D, Ross R B. Trigger-based incre-

mental data processing with unified sync and async model.

IEEE Transactions on Cloud Computing, 2021, 9(1): 372-

385. DOI: 10.1109/TCC.2018.2830348.

[30] Zhang Y, Gao Q, Gao L, Wang C. PrIter: A distributed

framework for prioritized iterative computations. In Proc.

the 2nd ACM Symposium on Cloud Computing, Oct. 2011,

Article No. 13. DOI: 10.1145/2038916.2038929.

[31] Takács G, Pilászy I, Németh B, Tikk D. Scalable collabo-

rative filtering approaches for large recommender systems.

Journal of Machine Learning Research, 2009, 10: 623-656.

Hui Yu is currently a Ph.D. candi-

date in the School of Computer Science

and Technology at Huazhong Univer-

sity of Science and Technology (HUST),

Wuhan. His current research interests

include graph processing and graph neu-

ral network.

Xin-Yu Jiang is currently a Master

student in the School of Computer

Science and Technology at Huazhong

University of Science and Technology

(HUST), Wuhan. He received his B.S.

degree in software engineering at Hunan

University, Changsha, in 2020. His

current research interests include graph

processing and graph neural network.

Jin Zhao is currently a Master

student in the School of Computer

Science and Technology at Huazhong

University of Science and Technology

(HUST), Wuhan. he received his B.S.

degree in software engineering at Hunan

University, Changsha, in 2020. His

current research interests include graph

processing and graph neural network.

Hao Qi is currently a Ph.D. can-

didate in the School of Computer

Science and Technology at Huazhong

University of Science and Techno-

logy (HUST), Wuhan. His current

research interests include graph

processing, system software, and archi-

tecture.

https://doi.org/10.1145/1851476.1851593
https://doi.org/10.14778/1920841.1920881
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/2815400.2815408
https://doi.org/10.1145/2741948.2741970
https://doi.org/10.1016/0024-3795(69)90028-7
https://doi.org/10.1145/322063.322067
https://doi.org/10.1007/BF02591967
https://doi.org/10.1007/s11390-020-0780-z
https://doi.org/10.1007/s11704-018-7443-z
https://doi.org/10.1109/TCC.2018.2830348
https://doi.org/10.1145/2038916.2038929

Hui Yu et al.: High-Performance Delta-Based Iterative Processing with a Group-Based Approach 813

Yu Zhang received his Ph.D. de-

gree in computer science from the

Huazhong University of Science and

Technology (HUST), Wuhan, in 2016.

He is currently an associate professor

with the School of Computer Science

and Technology, HUST, Wuhan. His

research interests include computer

architecture, system software, runtime optimization,

programming model, and big data processing. He is a

member of CCF, ACM, and IEEE.

Xiao-Fei Liao received his Ph.D.

degree in computer science and en-

gineering from Huazhong University

of Science and Technology (HUST),

Wuhan, in 2005. He is now the

vice dean of the School of Computer

Science and Technology at HUST,

Wuhan. He has served as a reviewer

for many conferences and journal papers. His research

interests are in the areas of system software, P2P system,

cluster computing and streaming services. He is a distin-

guished member of CCF and a member of ACM and IEEE.

Hai-Kun Liu received his Ph.D.

degree from Huazhong University of

Science and Technology, Wuhan. He is

an associate professor with the School

of Computer Science and Technology,

HUST, Wuhan. His current research

interests include in-memory computing,

virtualization technologies, and cloud

computing. He is a senior member of CCF, and a member

of ACM and IEEE.

Fu-Bing Mao received his Ph.D.

degree from Nanyang Technological

University, Singapore. He is currently

an assistant professor in School of

Computer Science and Technology,

Huazhong University of Science and

Technology, Wuhan. His research

interests include computer architecture,

system software, FPGA physical design and optimization

algorithms.

Hai Jin is a Cheung Kung Scholars

Chair Professor of computer science and

engineering at Huazhong University

of Science and Technology (HUST),

Wuhan. Jin received his Ph.D. degree

in computer engineering from HUST,

Wuhan, in 1994. In 1996, he was

awarded a German Academic Exchange

Service fellowship to visit the Technical University of

Chemnitz in Germany. Jin worked at the University of

Hong Kong, Hong Kong, between 1998 and 2000, and as

a visiting scholar at the University of Southern California

between 1999 and 2000. He was awarded Excellent Youth

Award from the National Science Foundation of China

in 2001. Jin is the chief scientist of ChinaGrid, the

largest grid computing project in China, and the chief

scientist of National 973 Basic Research Program Project

of Virtualization Technology of Computing System, and

Cloud Security. Jin is a fellow of CCF and IEEE and

a member of ACM. He has co-authored 15 books and

published over 600 research papers. His research interests

include computer architecture and virtualization.

	1 Introduction
	2 Related Work
	3 Motivation
	3.1 Delta-Based Iterative Execution Model
	3.2 Inefficiency of Existing Execution Models

	4 Our Approach
	4.1 Group-Based Iterative Execution Model
	4.2 Heuristic Scheduling Algorithm
	4.2.1 Factors of Priority Definition
	4.2.2 Priority Definition and Group-Based Scheduling

	5 Implementation of Aiter-R
	6 Performance Analysis
	7 Experimental Evaluation
	7.1 Number of Trigger Actions forConvergence
	7.2 Runtime Overhead
	7.3 Execution Time
	7.4 Impacts of Various Parameters

	8 Conclusions

