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Abstract
Tackling temporal path problems in temporal graphs is essen-

tial for time-sensitive applications. Although many solutions

have been proposed to handle temporal path problems, due
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to the intrinsic time constraints, these solutions require the

vertices of the temporal graph to be sequentially handled

along the time-dependent chains (i.e., the temporal depen-

dencies between these vertices) to form the temporal path.

This sequential temporal nature poses the challenges of poor
parallelism and slow convergence speed, preventing existing
solutions from fully leveraging the massive parallelism and

high internal bandwidth of GPU to handle temporal path

problems. To overcome these challenges, this paper proposes

TempGraph, an efficient chain-driven GPU-based temporal

graph computing framework. Specifically, it transforms the

temporal graph into a set of disjoint time-dependent chains

that can elegantly expose the temporal dependency between

the vertices while facilitating the fast path exploration along

these chains over GPU. Furthermore, TempGraph employs

a novel Generate-Activate-Compute execution model to de-

couple the temporal dependency between different chains

through maintaining a set of shortcuts for them, which en-

ables multiple chains to be concurrently handled by massive

GPU threads, achieving fast convergence speed and high
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parallelism on the GPU. Experiments on an A100 GPU show

that TempGraph outperforms the state-of-the-art GPU-based

solutions by 3.0-16.2×. Besides, TempGraph on an A100 GPU

gains 33.9-368.9× speedups compared to the cutting-edge

CPU-based system TeGraph on a 128-core CPU machine.

CCS Concepts: • Computing methodologies→ Parallel
computing methodologies; • Computer systems orga-
nization→ Parallel architectures.

Keywords: Temporal graph computing; GPU; Data paral-

lelism; Convergence speed
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1 Introduction
Many real-world graphs are temporal in nature, meaning

their edges are annotated with temporal information [28, 46],

and such graphs are referred to as temporal graphs. This tem-

poral information serves as a crucial metric for data analytics

in many domains such as transportation networks [7], so-

cial media [45], real-time epidemiology analysis [82], and

e-commerce [29]. Figure 1 (a) depicts a temporal graph for

an aviation network, where the time interval [4, 5) of the

edge 𝐼→𝐽 signifies the occurrence of a flight departing from

𝐼 at time 4 and arriving at 𝐽 at time 5. The temporal path
problems in the temporal graphs constitute the foundational

components for numerous time-sensitive applications. For

instance, the temporal path problems is crucial for optimiz-

ing routes in traffic navigation [56], tracking the spread of

information in social network [63], modeling disease trans-

mission in health informatics [40], and detecting anomalies

in financial networks [38]. A temporal path is a legal path

under temporal constraints [18–20, 56], where the time se-

quence along this path is strictly increasing. For example, to

find a legal path in an aviation network, the arrival time must

be earlier than the departure time at each transit airport.

The wide applicability and criticality of application do-

mains necessitate high performance for tackling temporal

path problems. Due to their massive data parallelism, GPUs

have become the most widely adopted general-purpose accel-

erator [11] and thus are attractive for accelerating temporal

graph computing (as discussed in §2.2). Recently, many tem-

poral graph computing engines [18, 19, 56, 68–70], primarily

designed for CPU platforms, have emerged, typically follow-

ing two executionmodels. The first model adapts static graph

algorithms, e.g., Bellman-Ford [2] or Dijkstra’s algorithm [8],
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Figure 1. An example of aviation network

by additionally considering time constraints. This static exe-
cution model can be implemented using existing GPU-based

static graph processing systems [15, 27, 35, 37, 53, 54, 65, 66,

81]. However, it suffers from significant redundant data ac-

cess and computational overhead due to the costly additional

operations required to guarantee time constraints [1, 18, 19].

To address these problems, a transformation-based execution
model [18, 19, 21, 68, 70] has been proposed. It transforms

the temporal graph into a Directed Acyclic Graph (DAG) by

embedding timing information into the vertices (as illustrate

in Figure 1(b)). By this way, the time constraints are natu-

rally reflected by the topological structure of the transformed

DAG,which enables to guarantee time constraints withmuch

lower extra overhead. As a result, it demonstrates better

performance than static execution model [18, 19]. However,

naively implementing this advanced CPU-oriented execution

model on GPU to accelerate temporal graph computing is

still inefficient (§2.3), because the inherent time constraints

of temporal path problems may easily make it underutilize

the computing power and memory bandwidth of the GPU.

The resource underutilization primarily arises from the

sequential nature of vertex state propagation along the time-

dependent chains (i.e., the temporal dependencies between

the vertices of the legal path) in the temporal graphs. Specif-

ically, each vertex is allowed to propagate its state to its

direct neighbor (i.e., this neighbor can be handled) only if its

timestamp is earlier than that of this neighbor. This unique

characteristic gives rise to two fundamental challenges. First,

the inherent time constraints restrict the state propagation

between the vertices of the temporal graphs, resulting in

only a very small fraction of vertices (less than 6.2% in our

characterization) being active in each iteration. Such poor
parallelism leads to a large number of GPU threads remaining

idle. Second, the long time-dependent chains mean that each

vertex requires many iterations to propagate its state to its in-

direct neighbors to trigger the processing atop them, leading

to slow convergence speed. Consequently, these challenges
cause the massive parallelism and high internal bandwidth of

GPU to be considerably underutilized, incurring a low GPU

utilization (less than 26.4% based on our characterization).

To address the above challenges, we propose a GPU-based

temporal graph computing framework TempGraph that can

efficiently handle the temporal path problems by fully ex-

ploiting the parallelism potential of GPU. Specifically, Temp-

Graph transforms the temporal graph into a set of disjoint
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time-dependent chains that can elegantly expose the tempo-

ral order of edges, offering an opportunity for facilitating the

fast vertex state propagation along these chains over GPU,

where each time-dependent chain is treated as the basic par-

allel processing unit. Moreover, TempGraph features a novel

chain-driven Generate-Activate-Compute (GAC) execution
model to decouple the temporal dependency among different

chains by generating a shortcut between the head vertex and

tail vertex of each chain. The shortcuts corresponding to dif-

ferent chains can be generated using massive GPU threads in

parallel. Through these generated shortcuts, the head vertex

of each chain can directly propagate its state to the tail vertex

of this chain. Then, the other chains originating from this

tail vertex can be immediately activated and computed with-

out waiting for slow state propagation along the temporal

order sequentially. As such, each vertex can propagate its

state to other vertices via much fewer iterations and massive

chains of the temporal graph can be handled by GPU threads

concurrently, ensuring fast convergence speed and high data

parallelism when handling temporal path problems. Besides,

TempGraph employs a temporal-dependency-aware parti-

tion scheduling method along with asynchronous CPU-GPU

data transfer to efficiently support out-of-GPU-memory pro-

cessing of large-scale temporal graphs.

We conduct extensive experiment on both real-world and

synthetic datasets. The results demonstrate that TempGraph

on an NVIDIA A100 GPU achieves 33.9-368.9× speedups

compared to the cutting-edge CPU-based solution, i.e., Te-

Graph [18, 19], on a 128-core Intel CPU machine. Besides,

TempGraph outperforms the cutting-edge GPU-based solu-

tions (i.e., the state-of-the-art GPU-based static graph pro-

cessing systems Tigr [53], Gunrock [66], LargeGraph [77],

and HyTGraph [65] that incorporate the cutting-edge tem-

poral graph computing techniques [18, 19, 56]) by 3.0-16.2×
on an NVIDIA A100 GPU.

2 Background and Motivation
2.1 Temporal Graph Computing
Temporal Graph. Different from static graphs, each edge

in temporal graphs has a lifespan with a starting time and an

ending time, which indicate the corresponding time interval

of existence for this edge. Formally, a temporal graph can be

represented by𝐺=(𝑉 , 𝐸), where𝑉 denotes the set of vertices

and 𝐸 is the set of edges. For each edge 𝑒 in 𝐸, we define it as

𝑒=(𝑢, 𝑣 , 𝑡 , 𝑡 ′) (or 𝑒=(𝑢, 𝑣 , 𝑡 , 𝑡 ′,𝑤 ) for weighted edge), where 𝑢,

𝑣 ∈ 𝑉 and there exists an edge from 𝑢 to 𝑣 starting at time 𝑡

and ending at time 𝑡 ′. Furthermore, a path 𝑃={𝑒1, 𝑒2,..., 𝑒𝑛} in

the temporal graph is called a legal path when 𝑃 meets the

condition: 𝑒𝑖=(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖 , 𝑡
′
𝑖 ), 𝑒 𝑗=(𝑢 𝑗 , 𝑣 𝑗 , 𝑡 𝑗 , 𝑡

′
𝑗 ), if 𝑖< 𝑗 , then 𝑡

′
𝑖≤𝑡 𝑗 .

For example, in Figure 1(a), a legal path can move from the

edge (𝐶 , 𝐵, 5, 6) to (𝐵, 𝐷 , 6, 7), but cannot to (𝐵, 𝐴, 3, 4).

Temporal PathProblems.Many real-world time-sensitive

applications primarily aim to tackle temporal path problems
on their temporal graphs [45, 68–70, 80]. We list several most

representative temporal path problems as follows [26, 68],

where each problem involves a single-source query. Given

a vertex 𝑢 ∈ 𝑉 and a time interval [start, end], the temporal

path problem is to find the temporal path 𝑃 between the

time interval (i.e., start ≤ start(𝑃 ) and end(𝑃 ) ≤ end) for each
vertex 𝑣 ∈ 𝑉 , where 𝑃 must satisfy the following conditions.

• Reachability: Reachability from𝑢 to 𝑣 means that P(𝑢,
𝑣) is not empty, where P(𝑢, 𝑣) = {𝑃 : 𝑃 is a temporal

path from 𝑢 to 𝑣}.
• Earliest-arrival Path: 𝑃 ∈ P(𝑢, 𝑣) is the earliest-arrival
path between𝑢 and 𝑣 if 𝑒𝑛𝑑 (𝑃)=𝑚𝑖𝑛{𝑒𝑛𝑑 (𝑃 ′):𝑃 ′∈P(𝑢, 𝑣)}.
• Fastest Path: 𝑃 ∈ P(𝑢, 𝑣) is the fastest path between 𝑢

and 𝑣 if 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑃)=𝑚𝑖𝑛{𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑃 ′):𝑃 ′∈P(𝑢, 𝑣)}.
• Shortest Path: 𝑃 ∈ P(𝑢, 𝑣) is the shortest path between
𝑢 and 𝑣 if 𝑑𝑖𝑠𝑡 (𝑃) =𝑚𝑖𝑛{𝑑𝑖𝑠𝑡 (𝑃 ′) : 𝑃 ′ ∈ P(𝑢, 𝑣)}.
• TopKNearestNeighbors:∀𝑢∈𝐾 and∀𝑣∈𝑉 /𝐾 , 𝑠𝑐𝑜𝑟𝑒 (𝑢)
≤𝑠𝑐𝑜𝑟𝑒 (𝑣), then 𝐾 is the set of k-nearest neighbors of

the vertex 𝑥 . 𝑠𝑐𝑜𝑟𝑒 (𝑢) is a self-defined measure func-

tion, e.g., the shortest path from 𝑥 to 𝑢.

Execution Model of Temporal Graph Computing.
Two main execution models are used in the literature [1, 10,

18, 19, 68, 70] to tackle temporal path problems.

Static Execution. It directly employs traditional static graph

algorithms, such as Dijkstra’s [8] or Bellman-Ford [2], ap-

plied through existing static graph processing systems [53–

55, 66], to address temporal path problems by incorporating

time constraints. Nevertheless, it suffers from significant re-

dundant data access and computation cost [1, 18, 19], because

the costly extra operations are required to guarantee time

constraints. For example, when exploring the legal paths

originating from𝐶 in Figure 1 (a), the edges (𝐵,𝐴, 3, 4), (𝐵,𝐶 ,

3, 4), and (𝐵, 𝐹 , 3, 4) need to be loaded and processed within

the static execution model, despite the fact that these edges

do not satisfy the timing constraints in this case.

Transformation-based Execution. It expands each vertex

of the temporal graph into multiple vertices with the same

vertex ID but different timestamps based on temporal infor-

mation [10, 18, 19]. This expansion facilitates the transfor-

mation of the temporal graph into an equivalent Directed
Acyclic Graph (DAG), where the topological structure of this

DAG can directly reflect the timing constraint as shown in

Figure 1 (b). We can find that the illegal path from𝐶 to 𝐴 via

𝐵 is naturally eliminated in Figure 1 (b), which avoids the

redundant overheads in the static execution model. Then, the

legal temporal paths can be explored through a universal sin-

gle scan over the transformed DAG [18, 19], i.e., sequentially

scanning the vertices of this DAG along their topological

order, which incorporates all essential time constraints.

2.2 The Need for GPU Acceleration
Many real-world scenarios are time-sensitive [6, 18, 19, 56,

68–70]. For instance, recommendation systems need to fre-

quently examine the shortest path among the users in a large

temporal network extracted from the shopping logs (e.g.,
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Figure 2. Comparison of the proportion of active vertices of the Single Source Shortest Path (SSSP) and the shortest path, where

the SSSP disregards the temporal information and the shortest path is executed under time constraints, respectively

more than 1.5 billions sales orders are created in Alibaba’s

Singles’ Day Shopping Festival [33, 64]) with sub-second

latency, as part of interactive requests [14, 51, 71]. However,

our results reveal that existing CPU-based solutions take over

6 seconds to perform a single shortest path query in a tempo-

ral graph with about 1 billion edges, making it challenging to

meet time demands. Besides, some applications performmas-

sive numbers of queries on common graphs [18, 56, 73, 79],

further exacerbating this challenge. For example, between-

ness centrality [4, 47] scenarios launch many independent

shortest path queries (each from a random vertex) on the

same temporal graph to measure the relative importance

of vertices. To address these performance demands, GPUs

present a promising alternative to CPU-based solutions due

to their higher compute throughput and memory bandwidth.

2.3 Challenges of Efficient Temporal Graph
Computing on GPU

During the temporal graph computing procedure, the main

operation is to explore the legal paths under time constraints.

Although many techniques [18, 19, 68–70, 80] have been

designed to enhance the computation and memory efficiency

of temporal graph computing, naively porting these CPU-

targeted temporal graph computing solutions to GPU is still

inefficient due to the following challenges.

Challenge #1 (Poor Parallelism): The inherent time con-
straints of the temporal path problems restrict the state prop-
agation between the vertices of temporal graphs, resulting in
only a small percentage of vertices being active in each iter-
ation. Taking Figure 1(a) as an example, the state of vertex

𝐵 cannot be propagated to 𝐴 to trigger the processing of 𝐴

when exploring a temporal path originating from 𝐶 . This

is because the ending time of the edge (𝐶 , 𝐵, 5, 6) is later

than the starting time of the edge (𝐵, 𝐴, 3, 4). In contrast,

traditional static graph processing disregards temporal infor-

mation and allows state propagation from 𝐵 to 𝐴 to trigger

the processing of 𝐴. That is, the average degrees of the real-

world temporal graphs will be reduced when the temporal
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Figure 3. Performance of various solutions over FlightList

and WebUK normalized to that of Tigr with one SMX

dimension is considered, which indicates lower achievable

parallelism can be achieved when processing each vertex.

As a result, compared to static graph processing, the con-

strained state propagation in temporal graph computing

incurs a significantly smaller ratio of active vertices in each

iteration. As shown in Figure 2, the ratio of active vertices of

temporal graph computing is less than 6.2%, which is much

lower than that of traditional static graph processing (up to

92.2%). This indicates that a large number of GPU threads

will sit idle when serving temporal graph computing, sig-

nificantly underutilizing the massive parallelism and high

internal bandwidth of GPU.

Challenge #2 (Slow Convergence Speed): The inher-
ent time constraints of the temporal path problems necessitate
that the vertices of the temporal graph be handled sequen-
tially along the temporal dependencies among them, leading
to more iterations needed for convergence. Taking Figure 1(b)

as an example and assuming (𝐵, 3) is the root vertex for the

shortest path, the vertices (𝐶 , 5), (𝐵, 6), and (𝐷 , 7) can be

handled when (𝐵, 3) has sequentially propagated its state

to them along the time-dependent chain (𝐵, 3)→(𝐶 , 5)→(𝐵,

6)→(𝐷 , 7), which takes three iterations. Consequently, this

leads to slow state propagation along the inherent temporal

dependencies among the vertices. Moreover, the transformed

graphs typically exhibit larger diameters than the original

temporal graphs [10, 18, 19], which necessitates more itera-

tions for convergence. Figure 2 shows that the shortest path

requires more than 30 iterations over WebUk for conver-

gence, whereas SSSP needs only 16 iterations. Furthermore,
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the sequential state propagation along the temporal depen-

dencies causes many vertices to remain inactive during exe-

cution, exacerbating the challenge of poor parallelism. For

instance, only 0.036% of the vertices are active in the 30
𝑡ℎ

iteration of the shortest path over WebUk.

Results.We evaluate four cutting-edge GPU-based graph

computing systems, i.e., Gunrock, Tigr, Gunrock-T, and Tigr-

T, when running the shortest path over different temporal

graphs. Note that Gunrock-T and Tigr-T are the versions of

Gunrock [66] and Tigr [53] optimized by the state-of-the-art

temporal graph computing solutions [18, 19, 56]. The details

of the platform and benchmarks used in this evaluation are

introduced in §5.1. Gunrock and Tigr handle the shortest

path using the static execution model, while Gunrock-T and

Tigr-T apply the transformed-based execution model. Fig-

ure 3 evaluates the performance of various solutions running

with different numbers of StreamingMultiprocessors (SMXs).

Although Gunrock-T performs better than other solutions

under all circumstances, its performance improvement still

has plateaued as soon as the number of SMXs equals 8
1
due

to the poor parallelism and slow convergence speed. As a

result, existing solutions struggle to utilize the massive data

parallelism and high internal bandwidth of GPU (e.g., the

GPU utilization ratio is less than 26.4% as shown in Figure 4)

when handling temporal graph computing.

3 Overview of TempGraph
To address the challenges in §2.3, we propose an efficient

GPU-based temporal graph computing framework, called

TempGraph. It transforms a temporal graph into a set of dis-

joint time-dependent chains and then efficiently decouples

the temporal dependency among these chains via a novel

chain-driven Generate-Activate-Compute (GAC) execution
model. In this way, it enables multiple chains to be efficiently

handled by GPU threads in parallel and achieves fast state

propagation. This is fundamentally different from existing

solutions on GPU, which sequentially handle the edges of

the temporal graph along the temporal dependencies among

them. In this section, we describe our execution model and

the system architecture of TempGraph in detail.

1
Mainstream GPU accelerators usually have far more than 8 SMXs. For

instance, an NVIDIA Tesla P100 has 56 SMXs, while an A100 has been

integrated with 128 SMXs.
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Figure 5. Illustration of chain-driven parallel execution

3.1 Chain-driven Parallel Execution Model
In this subsection, we first present two fundamental concepts

and then propose our chain-driven GAC execution model

for efficient temporal graph computing on GPU.

Basic Concepts. Definition 1 (Time-dependent Chain):
Given a temporal graph𝐺=(𝑉 , 𝐸), we represent𝐺 = ∪𝐶ℎ𝑙 ∈𝐶ℎ
𝐶ℎ𝑙 , where𝐶ℎ is a set of disjoint time-dependent chains, and

𝐶ℎ𝑙 = (𝑣𝑥 , 𝑡𝑥 )→. . .→(𝑣𝑦 , 𝑡𝑦) is a sequence of connected ver-

tices that guarantee the time constraints, i.e., 𝑡𝑥 ≤ . . . ≤ 𝑡𝑦 . 𝑙 is
the chain ID. Moreover, for any two time-dependent chains,

e.g.,𝐶ℎ′
𝑙
= (𝑣 ′𝑥 , 𝑡

′
𝑥 )→...→(𝑣 ′𝑦 , 𝑡

′
𝑦) and𝐶ℎ

′′
𝑙
= (𝑣 ′′𝑥 , 𝑡

′′
𝑥 )→...→(𝑣 ′′𝑦 ,

𝑡 ′′𝑦 ), they should ensure that𝐶ℎ′
𝑙
∩𝐶ℎ′′

𝑙
⊆ {(𝑣 ′𝑥 , 𝑡

′
𝑥 ), (𝑣

′
𝑦 , 𝑡
′
𝑦)} ∩

{(𝑣 ′′𝑥 , 𝑡
′′
𝑥 ), (𝑣

′′
𝑦 , 𝑡
′′
𝑦 )}. It means that the intersections of any two

chains are only the intersections of the head and tail vertices

of these two chains. For faster convergence rate, the disjoint

time-dependent chains are the longest chains that satisfy the

above conditions. In this way, each time-dependent chain

(e.g., (𝐴, 1)→(𝐻 , 2)→(𝐵, 3) in Figure 5(a)) can be efficiently

handled by a GPU thread to achieve fast state propagation.

Definition 2 (Hub-vertex and Skeleton-graph): We define

the set of head vertices of all time-dependent chains as hub-
vertices, e.g., the vertex (𝐴, 1) in Figure 5(a). Therefore, each

hub-vertex meets one of the following three conditions: 1)

its in-degree is equal to zero; 2) its in-degree is greater than

one; 3) its out-degree is greater than one. When we generate

a shortcut (e.g., (𝐴, 1)→(𝐵, 3) in Figure 5(b)) for the head and

tail vertices of each time-dependent chain (i.e., (𝐴, 1)→(𝐻 ,

2)→(𝐵, 3)), the new state of each hub-vertex (e.g., (𝐴, 1)) is

able to immediately influence another one (i.e., (𝐵, 3)) and

then quickly drive more chains (i.e., (𝐵, 3)→(𝐴, 4)→(𝐾 , 6),

(𝐵, 3)→(𝐶 , 5)→(𝐵, 6)→(𝐷 , 7), and (𝐵, 3)→(𝐹 , 6)→(𝐷 , 7)) to

be concurrently handled by massive threads of GPU. These

shortcuts are used to construct the skeleton-graph, denoted
as 𝐺𝑠 , as shown in Figure 5(c).

Chain-driven GAC Parallel Execution. In this execu-

tion model, the temporal graph is represented as a series

of disjoint time-dependent chains, which are taken as the

basic parallel processing unit. The processing of these chains

consists of three stages: skeleton-graph generating, shortcut-

guided chain activating, and chain-based parallel computing,

which are formalized as follows.
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Figure 6. TempGraph architecture

Skeleton-graph Generating. For each time-dependent chain

𝐶ℎ𝑙=(𝑣𝑥 , 𝑡𝑥 )→. . .→(𝑣𝑦 , 𝑡𝑦), it generates a corresponding short-

cut 𝑆𝑙 : (𝑣𝑥 , 𝑡𝑥 )→(𝑣𝑦 , 𝑡𝑦) between 𝐶ℎ𝑙 ’s head and tail vertices.

The weight of each shortcut is calculated according to the

specific temporal path problems, because they may use differ-

ent formulae to calculate the state. For example, the weights

corresponding to the shortcut (𝑣𝑥 , 𝑡𝑥 )→(𝑣𝑦 , 𝑡𝑦) are
∑

𝑒∈𝐶ℎ𝑙 𝑊𝑒

and

∑
𝑒∈𝐶ℎ𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑒) for shortest path and fastest path,

respectively, where 𝑒 is an edge in𝐶ℎ𝑙 ,𝑊𝑒 is the weight of 𝑒 ,

and 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑒) is the duration of 𝑒 , respectively. The gen-

eration of the shortcuts for different time-dependent chains

can be performed in parallel, because their calculations do

not depend on each other. Finally, all constructed shortcuts

are used to construct the skeleton-graph𝐺𝑠=(𝑉𝑠 , 𝐸𝑠 ), where

𝑉𝑠 is the set of hub-vertices and 𝐸𝑠 is the set of shortcuts.

Shortcut-guided Chain Activating. To enable different time-

dependent chains to be handled in parallel, it immediately

propagates the new state of the active vertex to the head

vertex of each time-dependent chain (i.e., hub-vertices) using

the shortcuts of skeleton-graph𝐺𝑠 . Specifically, it assigns the

shortcuts of 𝐺𝑠 to be handled according to their topological

order and performs the following operation for each short-

cut (e.g., 𝑆𝑙 : (𝑣𝑥 , 𝑡𝑥 )→(𝑣𝑦 , 𝑡𝑦)): (𝑣𝑥 , 𝑡𝑥 ).state←Propagate(𝑆𝑙 ),
where (𝑣 , 𝑡 ).state is the state of the vertex (𝑣 , 𝑡 ) and Propagate(∗)
denotes the operation that propagates the new state of the

vertex (𝑣𝑥 , 𝑡𝑥 ) based on the shortcut𝑆𝑙 . Note that the Propagate
operation is determined by the specific temporal path prob-

lems. In this way, the head vertices ofmultiple time-dependent

chains will be quickly activated, thereby driving these chains

to be concurrently handled by massive threads of GPU.

Chain-based Parallel Computing.When the time-dependent

chains are activated, their IDs will be maintained in an active

chain queue, i.e., Chain_Queue. After that, these activated
chains will be allocated to the GPU threads for parallel pro-

cessing, where each chain is assigned to be handled by a

GPU thread. In this way, the GPU can concurrently handle

different chains to exploit its high parallelism fully. Further-

more, the new state of each vertex (e.g., (𝐴, 1) in Figure 5) can

be immediately propagated to its successors (i.e., (𝐻 , 2) and

(𝐵, 3) in Figure 5) along the same chain with one iteration.

Table 1. APIs of TempGraph

APIs Description
VInitial() Initializing the state of each vertex

GenerateShortcut() Generating the shortcut for each chain

Propagate() Propagating the vertex state along each

shortcut or each edge of the chain

3.2 System Architecture
Figure 6 shows the architecture of TempGraph, which has

the following three main components.

Chain-based Temporal Graph Transformer. The orig-
inal temporal graph is usually represented in the edge-list

format [68, 69]. Before the execution, it first transforms the

original temporal graph as a DAG by expanding each ver-

tex based on the timing information [10, 18, 19]. Then, the

transformer partitions the DAG into a series of disjoint time-

dependent chains. Specifically, it identifies the hub-vertices
and then concurrently takes these hub-vertices as the roots

to explore the DAG so as to construct time-dependent chains.

Next, these constructed chains will be transferred into GPU

memory for processing. Note that the temporal graph needs

to be transformed into the time-dependent chains only once,

and then these chains can be reused by different applications.

Skeleton-graph Generator. It generates the shortcuts
for time-dependent chains and then uses these generated

shortcuts to construct the skeleton-graph. To improve con-

struction efficiency, it assigns multiple GPU threads to calcu-

late the weights of the shortcuts in parallel by concurrently

conducting the user-specified operation over multiple chains.

Note that the shortcut is generated only if the correspond-

ing chain contains more than two vertices, otherwise the

corresponding temporal edge is directly used to construct

the skeleton-graph. Then, the constructed skeleton-graph

is maintained in GPU memory to guide the parallel com-

puting of the chains. Although generating shortcuts incurs

extra runtime overhead, it can effectively leverage massive

GPU threads to minimize this cost. More importantly, it en-

ables more chains to be parallelly computed by the GPU

during execution (introduced later), significantly boosting

the performance of temporal graph computing on GPU.

Shortcut-guidedChain Scheduler.TempGraph employs

two separate graph computing engines to handle the skeleton-

graph 𝐺𝑠 and the time-dependent chains 𝐶ℎ, respectively.

During the execution, the skeleton-graph computing engine

handles the shortcuts along their topological order in 𝐺𝑠 . In

this way, the time-dependent chains will be quickly activated

for processing. The IDs of these activated chains are then

stored in the Chain_Queue. Meanwhile, the chain computing

engine takes the chains in the Chain_Queue for parallel pro-

cessing, and each activated chain is assigned to be handled

by a single GPU thread. By such means, the high parallelism

of GPU can be fully exploited to process the temporal graph.

Programming APIs. TempGraph provides several APIs

(detailed in Table 1) for users to implement temporal path
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template<typename T>

// Using the edge ej=<(vj, tj), (vi, ti)> to generate the 

shortcut

__device__ T GenerateShortcut(Edge ej, Shourtcut Sl){

    return 0

}

// Processing the edge ej=<(vj, tj), (vi, ti)> to propagate 

the state of (vj, tj) to that of (vi, ti)

__device__ T Propagate(Vertex (vj, tj), Vertex (vi, ti)){

    return min(vj.state, 0)

}

template<typename T>

// Using the edge ej=<(vj, tj), (vi, ti)> to generate the 

shortcut 

__device__ T GenerateShortcut(Edge ej, Shourtcut Sl){

    return ti

}

// Processing the edge ej=<(vj, tj), (vi, ti)> to propagate 

the state of (vj, tj) to that of (vi, ti)

__device__ T Propagate(Vertex (vj, tj), Vertex (vi, ti)){

    return min(vj.state, ti)

}

template<typename T>

// Using the edge ej=<(vj, tj), (vi, ti)> to generate the 

shortcut 

__device__ T GenerateShortcut(Edge ej, Shourtcut Sl){

    return Sl + dist(ej)

}

// Processing the edge ej=<(vj, tj), (vi, ti)> to propagate 

the state of (vj, tj) to that of (vi, ti)

__device__ T Propagate(Vertex (vj, tj), Vertex (vi, ti)){

    return min(vj.state, vi.state + dist(ej))

}

template<typename T>

// Using the edge ej=<(vj, tj), (vi, ti)> to generate the 

shortcut 

__device__ T GenerateShortcut(Edge ej, Shourtcut Sl){

    return Sl + duration(ej)

}

// Processing the edge ej=<(vj, tj), (vi, ti)> to propagate 

the state of (vj, tj) to that of (vi, ti)

__device__ T Propagate(Vertex (vj, tj), Vertex (vi, ti)){

    return min(vj.state, vi.state + duration(ej))

}

(a) Reachability (b) Earliest-arrival path (c) Shortest Path (d) Fastest Path

Figure 7. Examples to illustrate the implementation of temporal path problems on TempGraph

problems. VInitial() is used to initialize the states of all ver-
tices according to certain applications. GenerateShortcut()
is employed to generate the weight of the shortcut for each

time-dependent chain. For the processing of each shortcut

or each edge on a chain, Propagate() is used to propagate

its source vertex’s state to update its destination vertex’s

state. To illustrate the usage of APIs, we use the shortest

path as an example. The VInitial function will set the val-

ues for the root vertex to 0 and the others to +∞. For each
time-dependent chain, the GenerateShortcut function is

implemented to accumulate the weights of each edge on this

chain and use this result as the corresponding shortcut’s

weight. For the Propagate function, we sum the weight of

each edge (or shortcut) with the distance of its source vertex

to yield a new distance, and then choose the smaller distance

between the calculated distance and the destination vertex’s

distance as its new distance. Our programming APIs only

require users to furnish a few lines of code for implementing

temporal graph problems as illustrated in Figure 7.

4 Implementation of TempGraph
4.1 Chain-based Temporal Graph Transformation
To provide an opportunity to fully utilize the massive par-

allelism and high internal bandwidth of GPU, we propose a

chain-based temporal graph transformation method. It ex-

pands the vertices of the temporal graph to obtain a DAG,

liking existing solutions [10, 18, 19], and then partitions this

DAG into a set of disjoint time-dependent chains, which

can elegantly expose the temporal information with higher

data parallelism. The following will mainly describe how to

efficiently partition the DAG into time-dependent chains.

Chain-based Temporal Graph Partitioning.We define

a vertex (𝑣 , 𝑡 ) ∈ 𝑉 that meets one of the following conditions

as a hub-vertex: 1) 𝐷𝑒𝑔𝑟𝑒𝑒in(𝑣 , 𝑡 ) = 0; 2) 𝐷𝑒𝑔𝑟𝑒𝑒in(𝑣 , 𝑡 ) ≥ 2; 3)

𝐷𝑒𝑔𝑟𝑒𝑒out(𝑣 , 𝑡 ) ≥ 2, where 𝐷𝑒𝑔𝑟𝑒𝑒in(𝑣 , 𝑡 ) and 𝐷𝑒𝑔𝑟𝑒𝑒out(𝑣 , 𝑡 )

indicate the in-degree and out-degree of (𝑣 , 𝑡 ), respectively.

All hub-vertices form a hub-vertex set 𝐻 . Each of these ver-

tices is usually the head vertex of the time-dependent chains

and thus can be used to generate the corresponding chains.

We use a parallel approach to generate time-dependent

chains. Specifically, it first divides the set of hub-vertices into

several chunks and then assigns them to CPU threads. As

illustrated in Algorithm 1, each CPU thread repeatedly takes

the hub-vertex as the root and then traverses the transformed

DAG in a depth-first order until all assigned hub-vertices

Algorithm 1 Chain-based Transformation on CPU

1: function Transformation((𝑣root, 𝑡root), 𝐶ℎ)

2: for each outgoing neighbor (𝑣𝑙 , 𝑡𝑙 ) of (𝑣root, 𝑡root) do
3: Insert((𝑣root, 𝑡root), 𝐶ℎ𝑙 )

4: ChainPartitioning((𝑣𝑙 , 𝑡𝑙 ), 𝐶ℎ𝑙 )

5: end for
6: Set the vertex (𝑣root, 𝑡root) as finished

7: end function
8: function ChainPartitioning((𝑣𝑙 , 𝑡𝑙 ), 𝐶ℎ𝑙 )

9: Insert((𝑣𝑙 , 𝑡𝑙 ), 𝐶ℎ𝑙 )

10: if (𝑣𝑙 , 𝑡𝑙 ) ∉ 𝐻 then
11: if (𝑣𝑙 , 𝑡𝑙 ) has outgoing neighbor (𝑣 , 𝑡 ) then
12: ChainPartitioning((𝑣 , 𝑡 ), 𝐶ℎ𝑙 )

13: else
14: NewChain(𝐶ℎ𝑙 )

15: end if
16: else
17: NewChain(𝐶ℎ𝑙 )

18: end if
19: end function

have been handled. Note that a hub-vertex (e.g., the vertex (𝐵,

3)) may be the head vertex of multiple time-dependent chains

(e.g., (𝐵, 3)→(𝐴, 4)→(𝐾 , 6) and (𝐵, 3)→(𝐶 , 5)→(𝐵, 6)→(𝐷 ,

7)). For each outgoing direct neighbor (e.g., (𝑣𝑙 , 𝑡𝑙 )) of the

root, a time-dependent chain (i.e., 𝐶ℎ𝑙 ) will be generated by

using the ChainPartitioning function (lines 2-5). When all

chains originating from this root have been generated, this

root will be set as finished (line 6). For the generation of each

chain, it first inserts the traversed vertex (e.g., (𝑣𝑙 , 𝑡𝑙 )) into a

vertex queue of the chain (i.e.,𝐶ℎ𝑙 ) and then detects whether

this vertex does not belong to the hub-vertices𝐻 (lines 9-10).

If it does not belong to𝐻 , the outgoing direct neighbor of (𝑣𝑙 ,

𝑡𝑙 ) will be further traversed to generate the chain (lines 11-13).

The vertices recursively explored by each CPU thread are

inserted into the same vertex queue successively to construct

chains (lines 3 and 9). When a new chain is generated (lines

14 and 17), it is only necessary to record the offset of the

vertex queue to maintain the head vertex of this chain. In

this way, the temporal graph can be transformed into a series

of disjoint time-dependent chains. Within each chain, the

vertices are stored following their inherent temporal order,

which facilitates fast vertex state propagation along the chain

and enhances the locality of vertex computing.
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Figure 8. Representation of the transformed Graph

Storage of Transformed Graph. We employ five arrays

to efficiently store the transformed graph on GPU. 𝑉𝐼𝑑𝑥 is

established to maintain the indexes of the vertices in each

chain following their temporal order sequentially. Thus, two

successive items in𝑉Idx can represent a temporal edge, where

the weight of each temporal edge is stored in𝑊𝑒 . The time

information and value of each vertex are stored in𝑇𝑣 and𝑉𝑣𝑎𝑙 ,

respectively. ChTable is also employed to index the chains

and maintain the indexes of their head vertices. The range

of a chain can be represented by two successive items of

ChTable. The chains originating from the same vertex will be

arranged in consecutive items within the above arrays. This

is because these chains are typically activated simultane-

ously for parallel computing. By such means, we can assign

these chains to be concurrently handled by the threads of a

warp, enabling these threads to perform coalesced accesses

to them (detailed in §4.4). Figure 8 shows the storage of the
transformed graph corresponding to the graph in Figure 5(a).

4.2 Skeleton-graph Generation
Although the generated time-dependent chains can achieve

fast vertex state propagation along the temporal order impli-

cated in them, the parallel execution of these chains remains

challenging due to the intrinsic temporal dependency among

them. For example, in Figure 5(a), the computing of the chain

𝐶ℎ1: (𝐵, 3)→(𝐶 , 5)→(𝐵, 6)→(𝐷 , 7) depends on that of 𝐶ℎ0:

(𝐴, 1)→(𝐻 , 2)→(𝐵, 3). That is, 𝐶ℎ1 can be handled only if

𝐶ℎ0 has been handled and propagated its vertex state to𝐶ℎ1.

Such poor parallelism makes it struggle to fully utilize the

computing power and memory bandwidth of GPU.

To overcome these limitations, we generate the shortcut

for each time-dependent chain, which enables us to decou-

ple the temporal dependency between the chains (detailed

in §4.3). As depicted in Algorithm 2, in order to generate

the shortcuts in parallel, it assigns each chain, e.g., 𝐶ℎ𝑙 , to

be handled by a single GPU thread (line 2). After that, it

detects whether 𝐶ℎ𝑙 contains more than two vertices (line

3), which can be obtained according to the information in

ChTable. If so, it repeatedly uses the user-specified func-

tion GenerateShortcut to calculate the weight of the cor-

responding shortcut 𝑆𝑙 by accumulating the weight of each

edge on this chain based on the corresponding application

(lines 4-6). Otherwise, the corresponding temporal edge is

directly treated as a shortcut to further reduce the extra

overhead (line 8). After all the shortcuts are generated, these

shortcuts are used to construct the skeleton-graph, which

Algorithm 2 Shortcut Generation on GPU

1: function Generation(𝐶ℎ, 𝑆)

2: for each 𝐶ℎ𝑙 ∈ 𝐶ℎ in parallel do
3: if 𝐶ℎ𝑙 contains more than two vertices then
4: for each temporal edge 𝑒 ∈ 𝐶ℎ𝑙 do
5: 𝑆𝑙←GenerateShortcut(𝑆𝑙 , 𝑒)
6: end for
7: else /*𝐶ℎ𝑙 only has an edge 𝑒 , i.e., two vertices*/

8: 𝑆𝑙←𝑊𝑒

9: end if
10: end for
11: end function

can bring two advantages. First, it enables the vertex state to

reach the corresponding indirect neighbors quickly, achiev-

ing faster convergence speed for temporal path problems.

Second, it enables the chains to be concurrently computed

by massive GPU threads through decoupling their temporal

dependencies, maximizing the degree of parallelism. Note

that when storing the skeleton-graph, the storage order of

shortcuts and time-dependent chains is the same. It means

that both of them can quickly retrieve each other.

4.3 Shortcut-guided Parallel Computing
To efficiently handle the time-dependent chains of the tem-

poral graph, we introduce a novel shortcut-guided hybrid

parallel execution method. It embraces two separate graph

computing engines (i.e., the skeleton-graph computing en-

gine and the chain computing engine), to decouple the tem-

poral dependency among the chains and handle multiple

chains in parallel. However, the implementation of shortcut-

guided parallel computing remains the following challenges.

First, the vertex states associated with different chains may

be irregularly passed through their common neighbor chains,

causing redundant data access and computation cost. Second,

the skewed lengths of the generated chains may cause the

low parallelism of GPU threads. Third, the skeleton-graph

struggles to be handled by GPU in parallel, because its short-

cuts must be handled along their temporal order. We present

how to address these challenges in the following text.

Topology-aware Skeleton-graphComputing.To avoid
the redundant computation of chains, the hub vertices of the

skeleton graph 𝐺𝑠 are assigned to be handled layer by layer

along their topological order in𝐺𝑠 (as shown in Figure 5(c)),

thereby regularly activating the chains for processing. As

depicted in Algorithm 3, it first obtains the corresponding

active hub-vertex according to the root vertex 𝑣𝑟𝑜𝑜𝑡 of the

temporal graph application. In detail, it detects whether 𝑣𝑟𝑜𝑜𝑡
is hub-vertex. If yes, this hub-vertex is set as active. Other-

wise, it retrieves the chain (e.g., 𝐶ℎ𝑥 ) containing 𝑣𝑟𝑜𝑜𝑡 (in-

troduced later) and then handles the vertices of 𝐶ℎ𝑥 along

their temporal order. Then, the state of the tail vertex of

𝐶ℎ𝑥 will be activated. If this tail vertex is hub-vertex, the
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Algorithm 3 Shortcut-guided Hybrid Parallel Execution

1: procedure SkeletonEngine(𝐺𝑠 , 𝐶ℎ, Chain_Queue)
2: GetActiveHubVertex(𝐶ℎ)

3: for each layer of hub-vertices 𝐻𝑙 do
4: for each active vertex (𝑣𝑖 , 𝑡𝑖 ) ∈ 𝐻𝑙 in parallel do
5: for each shortcut 𝑆𝑙 : (𝑣𝑖 , 𝑡𝑖 )→(𝑣 𝑗 , 𝑡 𝑗 ) in𝐺𝑠 do
6: (𝑣 𝑗 , 𝑡 𝑗 ).state←Propagate(𝑆𝑙 )
7: Chain_Queue.Push(𝐶ℎ𝑙 .neighborchains)
8: Set (𝑣 𝑗 , 𝑡 𝑗 ) as active

9: end for
10: Set (𝑣𝑖 , 𝑡𝑖 ) as inactive

11: end for
12: end for
13: end procedure
14: procedure ChainEngine(𝐶ℎ, Chain_Queue)
15: RemoveChain(𝐶ℎ, Chain_Queue)
16: SortChain(Chain_Queue)
17: GroupChain(Chain_Queue)
18: for each group 𝑔𝑟 of chains in parallel do
19: for each chain 𝐶ℎ𝑙 in 𝑔𝑟 do
20: ChainComputing(𝐶ℎ𝑙 )

21: end for
22: end for
23: end procedure
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Figure 9. The distribution of chain lengths for different real-

world temporal graphs in Table 2

corresponding hub-vertex is set as active. After that, each

layer of the hub-vertices is handled in parallel (lines 3-12).

For each active hub-vertex (𝑣𝑖 , 𝑡𝑖 ) in 𝐺𝑠 , each of its outgoing

edges (e.g., (𝑣𝑖 , 𝑡𝑖 )→(𝑣 𝑗 , 𝑡 𝑗 )) is a shortcut 𝑆𝑙 . The processing of

𝑆𝑙 can quickly influence the state of another hub-vertex (i.e.,

(𝑣 𝑗 , 𝑡 𝑗 )) and activate more chains (i.e., the neighbor chains

of 𝐶ℎ𝑙 ) (lines 5-9), where the activated chains are stored in

Chain_Queue (line 7). Note that we establish a hash table

on GPU [13] to quickly retrieve the corresponding chain for

each vertex (except hub-vertices), where each entry in this

hash table is the form of <(𝑣𝑖 , 𝑡𝑖 ), 𝐶ℎ𝑙>.

Chain-driven Parallel Computing. After the skeleton-
graph computing, massive chains will be activated and their

IDs are stored in Chain_Queue. Then, these chains are as-
signed to be concurrently handled by the GPU threads as

shown in Algorithm 3. Note that the chains that only contain

two vertices do not need to be handled anymore, because

their corresponding edges have been handled during the
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and chain computing
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Figure 11. Illustration of the layout optimization

skeleton-graph computing. Therefore, these chains will be

removed from Chain_Queue (line 15). For efficient parallel

processing, the remaining chains in Chain_Queue will be

sorted according to their IDs, ensuring better data locality

(line 16). Nevertheless, as illustrated in Figure 9, the gen-

erated chains typically exhibit imbalances in their lengths.

Due to the lock-step execution semantics of GPU, assign-

ing chains with different lengths to be processed by GPU

threads on the same SMX can result in the underutilization of

this SMX. Therefore, the chains in Chain_Queue are evenly

grouped to try to ensure that different threads on the same

SMX handle almost the same number of edges in their as-

signed chains (line 17). Next, the grouped chains are assigned

to be computed by GPU in parallel (lines 18-22).

Overlap between Skeleton-graph Computing and
Chain Computing. Although chain computing can be effi-

ciently conducted in parallel, skeleton-graph computing may

be the bottleneck due to the lower degree of data parallelism.

Fortunately, the interleaving between skeleton-graph com-

puting and chain computing for each partition of shortcuts

provides the potential opportunity to hide this bottleneck.

Thus, we sequentially divide the shortcuts of the skeleton-

graph into a series of partitions according to their topological

order, where the shortcuts of the hub vertices in the same

layer (as illustrated in Figure 5 (c)) try to be assigned into the

same partition. As shown in Figure 10, when the shortcuts

of the 𝑖𝑡ℎ partition have been handled by the skeleton-graph

computing engine, the chain computing enginewill be driven

to handle the chains corresponding to the shortcuts of the

𝑖𝑡ℎ partition. In the meantime, the skeleton-graph computing

engine starts handling the shortcuts of the (𝑖 + 1)𝑡ℎ partition.

By such means, the overheads of the skeleton-graph comput-

ing can be usually hidden for better performance. Note that

these partitions need to be assigned and processed along the

topological order among them.

4.4 Layout Optimization for GPU Architectures
Data locality is a pivotal factor influencing the efficiency of

GPU applications. During the execution, TempGraph assigns

each time-dependent chain to be handled by a thread, where
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the vertices of this chain are consecutively maintained in

𝑉𝐼𝑑𝑥 by default as depicted in Figure 8. Therefore, from the

perspective of an individual thread, the data accesses to𝑉𝐼𝑑𝑥
exhibit good data locality. Nevertheless, GPU threads are

organized into warps consisting of 32 threads and operate

in a Single Instruction, Multiple Data (SIMD) fashion. From

the warp’s perspective, access to 𝑉𝐼𝑑𝑥 is actually strided,

which hurts the data locality. To overcome this challenge,

we optimize the layout of the transformed temporal graph

by sorting the items of the chains originating from the same

vertex in a strided manner as shown in Figure 11, because

these chains are usually activated simultaneously for parallel

computing. By suchmeans, when the chains originating from

the same vertex are assigned to be handled by the same warp

(as they are consecutive in 𝑉𝐼𝑑𝑥 , 𝑇𝑣 , 𝑉𝑣𝑎𝑙 , and𝑤𝑒 ), each time

they access an item, a consecutive segment will be retrieved

from global memory, ensuring efficient coalesced accesses.

4.5 Supporting of Out-of-GPU-Memory Processing
To handle large-scale temporal graphs (i.e., those exceeding

GPU memory capacity), TempGraph streams the partitions

(as introduced in §4.3) from CPU memory to GPU memory

for processing. In detail, due to the sequential nature of state

propagation along temporal dependencies, the partitions

are tried to be dispatched to GPU for parallel processing

according to their topological order. Thus, each partition is

assigned a layer number, determined by the minimum layer

number of its hub vertices. When SMXs become idle, the ac-

tive partitions with the smallest layer number are prioritized

for dispatch from the host to the idle SMXs for processing.

To further enhance parallelism, the processing order of the

partitions at the same layer is arranged in descending order

according to the total number of chains in their successive

partitions. By such means, more successive chains are able

to be activated and handled when SMXs become idle.

To overlap CPU-GPU data transfer and kernel execution,

the partitions are streamed asynchronously to GPU when

some previously transferred partitions are being handled on

GPU. In detail, TempGraph creates multiple streams for the

transfer of partitions, and the number of streams is expected

to be 𝑁=(𝑀𝐺 − 𝑆𝑟 )/𝑆𝑃 , where𝑀𝐺 is the GPU global memory

size, 𝑆𝑃 is the size of each partition, and 𝑆𝑟 is the size of the re-

served space. Then, the data transfer and kernel computation

of different streams will be automatically overlapped.

5 Evaluation
5.1 Experimental Setup
System Configuration. The hardware platform used in our

experiments is a server equipped with two 64-core Intel Xeon

Platinum 8592V CPUs, 256 GB memory, and an NVIDIA

A100 GPU with 128 SMXs (6912 cores) and 80 GB global

memory. The server runs Ubuntu 18.04 with Linux kernel

version 5.10.0 and CUDA 11.8 installed. All GPU programs

are compiled with nvcc using the highest optimization level.

Table 2. Data sets properties (𝐿𝑉 and 𝐿𝐸 are the average

lifespans of vertices and edges, respectively)

Graph |𝑉 | |𝐸| 𝐿𝑉 𝐿𝐸

RoadNet-TX (TX) [32] 1.4 M 2.0 M 19.7 11.2

RoadNet-CA (CA) [32] 2.0 M 2.8 M 20.7 12.4

OpenFlights (OF) [24] 67 K 4.2 M 30.6 24.1

FlightList (FL) [58] 160 K 41 M 56.2 5.6

Reddit (RE) [17] 9.3 M 528.2 M 7.0 1.3

MAG [17] 67.4 M 1.1 B 17.8 12.9

Twitter (TW) [5] 52.5 M 1.9 B 27.5 8.1

WebUK (WU) [3] 133.6 M 5.5 B 16.3 12.5

LDBC-8_9 (L89) [22] 10.6 M 848.7 M 243.5 7.5

LDBC-9_0 (L90) [22] 12.9 M 1.0 B 69.8 44.7

Benchmarks and Datasets. Four representative tem-

poral path problems (i.e., reachability, earliest-arrival path,

shortest path, and fastest path, as listed in §2.1) are used as

benchmarks. As shown in Table 2, eight real-world graphs

and two synthesized graphs are used in our experiments.

Note that Reddit, MAG, and WebUK are real-world temporal

graphs, while Twitter is a social network with synthesized

temporal information [1, 10]. RoadNet-TX and RoadNet-CA

are real-world transportation temporal graphs, and Open-

Flights and FlightList are real-world flight temporal graphs.

LDBC-8_9 and LDBC-9_0 are two synthetic temporal graphs

and are generated by using the Linked Data Benchmark Coun-
cil (LDBC) [23, 67].
Baselines. To evaluate the performance of TempGraph,

we first incorporate the state-of-the-art temporal graph com-

puting techniques [18, 19, 56] into the cutting-edge GPU-

based static graph processing engines, i.e., Tigr (version

1.0) [53] andGunrock (version 2.1.0
2
) [66], respectively. Then,

the optimized versions of Tigr [53] and Gunrock [66] are

called Tigr-T and Gunrock-T, respectively, which can han-

dle temporal path problems using the transformation-based

execution model. The experiments show that Tigr-T and

Gunrock-T outperform Tigr and Gunrock by up to 4.17× and
4.53×, respectively, when handling temporal path problems.

Besides, we also use the state-of-the-art CPU-based tempo-

ral graph computing engine TeGraph [18, 19] as the CPU

baseline. Note that we run the experiments for 100 times

with randomly selected vertex as input. The reported results

are the average result of the 100 independent runs.

5.2 Overall Performance
Like existing solutions [18, 19, 69, 70], the execution time of

TempGraph consists of offline temporal graph transforma-

tion time and online temporal graph computation time. In

detail, the transformation involves converting the original

temporal graph into its equivalent DAG and then partition-

ing this DAG into a series of disjoint time-dependent chains.

The computation includes generating shortcuts for these

time-dependent chains and then handling both the shortcuts

2
Gunrock version 2.1.0 was newly released in July 2024

(https://github.com/gunrock/gunrock/releases/tag/v2.1.0).
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Table 3. Transformation time in seconds

TX CA OF FL RE

TeGraph 0.044 0.062 0.022 0.135 0.343

Tigr-T 0.051 0.071 0.023 0.144 0.392

Gunrock-T 0.048 0.069 0.024 0.151 0.366

TempGraph 0.053 0.074 0.027 0.169 0.412

MAG TW WU L89 L90

TeGraph 2.263 2.207 6.407 0.562 0.744

Tigr-T 2.572 2.382 7.014 0.608 0.878

Gunrock-T 2.433 2.314 6.862 0.594 0.841

TempGraph 2.648 2.461 7.376 0.632 0.909

and chains in parallel for certain applications. Note that the

offline transformation must be re-performed for each new

temporal graph, while the transformed result can be reused

for multiple applications running over the same graph. The

online computation needs to be performed for each new

application. We next report temporal graph transformation

time, temporal graph computation time, and end-to-end exe-

cution time (i.e., the total time required for both transforma-

tion and computation) of different solutions, respectively.

Temporal Graph Transformation. Table 3 shows the
transformation cost of different solutions. We can find that

TempGraph needs slightly more extra transformation time,

accounting for 11.8%-25.2%, 3.1%-17.4%, and 5.3%-12.5% of

the transformation time of TeGraph, Tigr-T, and Gunrock-T,

respectively. This is because, in addition to transforming the

original temporal graph into its equivalent DAG, TempGraph

requires a little extra time to divide the transformed DAG

into a series of disjoint time-dependent chains by traversing

this DAG in parallel for exactly once (detailed in §4.1). Be-
sides, the memory footprint required by TempGraph are 0.5

GB, 0.7 GB, 0.4 GB, 0.9 GB, 4.7 GB, 12.6 GB, 28.4 GB, 49.1 GB,

14.3 GB, and 11.9 GB for TX, CA, OF, FL, RE, MAG, TW, WU,

L89, and L90, respectively. The extra storage cost (e.g., main-

taining the skeleton-graph and hash table) of TempGraph

accounts for 13.8%-27.4% of the size of the original temporal

graphs. Although TempGraph needs such additional cost,

it offers an opportunity for facilitating the fast vertex state

propagation along these chains and enabling many chains

to be concurrently handled by massive threads of GPU.

Temporal Graph Computation. Table 4 shows the com-

putation time of Tigr-T, Gunrock-T, and TempGraph on an

NVIDIA GPU, and TeGraph on an Intel CPU. It can be seen

that TempGraph outperforms TeGraph, Tigr-T, and Gunrock-

T by 33.9-368.9×, 5.9-16.2×, and 3.0-11.7×, respectively. The
performance improvement of TempGraph mainly comes

from the following reasons. First, it enables the vertex states

to be propagated more quickly along the time-dependent

chains, which elegantly exposes the temporal order of the

edge in the temporal graph. Second, it generates the short-

cuts to decouple the temporal dependency among different

chains, enabling each vertex to quickly propagate its state

to its indirect neighbors for faster convergence with fewer

iterations. Third, through utilizing the generated shortcuts,

Table 4. Temporal graph computation time in milliseconds

TeGraph Tigr-T Gunrock-T TempGraph

R
e
a
c
h
a
b
i
l
i
t
y

TX 4.9 (49.1×) 0.5 (5.0×) 0.4 (4.1×) 0.1
CA 10.5 (53.5×) 1.1 (5.5×) 0.9 (4.5×) 0.2
OF 4.2 (42.0×) 0.5 (5.0×) 0.3 (3.0×) 0.1
FL 21.1 (70.3×) 2.2 (7.3×) 1.4 (4.7×) 0.3
RE 95.5 (119.4×) 4.7 (5.9×) 3.7 (4.6×) 0.8

MAG 1157.9 (148.5×) 55.2 (7.1×) 40.4 (5.2×) 7.8
TW 1361.5 (172.3×) 64.1 (8.1×) 48.5 (6.1×) 7.9
WU 20667.4 (206.3×) 932.2 (9.3×) 654.6 (6.5×) 100.2
L89 142.8 (129.8×) 6.9 (6.3×) 5.3 (4.8×) 1.1
L90 209.2 (130.1×) 10.5 (6.6×) 7.4 (4.6×) 1.6

E
a
r
l
i
e
s
t
-
a
r
r
i
v
a
l
P
a
t
h

TX 26.2 (65.5×) 3.5 (8.8×) 2.7 (6.8×) 0.4
CA 50.8 (63.5×) 7.1 (8.9×) 4.6 (5.8×) 0.8
OF 28.7 (57.3×) 4.1 (8.2×) 3.2 (6.4×) 0.5
FL 97.4 (64.9×) 13.2 (8.8×) 8.9 (5.9×) 1.5
RE 721.5 (175.9×) 34.1 (8.3×) 24.9 (6.1×) 4.1

MAG 5971.4 (242.7×) 268.5 (10.9×) 191.3 (7.8×) 24.6
TW 6217.8 (244.8×) 284.2 (11.2×) 196.1 (7.7×) 25.4
WU 82750.2 (328.0×)3672.9 (14.6×) 2404.1 (9.5×) 252.3
L89 718.5 (199.6×) 32.9 (9.1×) 23.3 (6.5×) 3.6
L90 1149.6 (205.3×) 52.3 (9.3×) 36.8 (6.6×) 5.6

S
h
o
r
t
e
s
t
P
a
t
h

TX 34.6 (70.4×) 4.2 (8.4×) 3.8 (7.8×) 0.5
CA 56.4 (64.1×) 6.5 (7.4×) 6.2 (6.9×) 0.9
OF 38.3 (58.2×) 5.4 (8.3×) 6.7 (7.1×) 0.7
FL 101.9 (62.2×) 14.9 (9.1×) 12.1 (7.4×) 1.6
RE 740.2 (189.8×) 34.3 (8.8×) 26.1 (6.7×) 3.9

MAG 6132.1 (249.3×) 278.1 (11.3×) 203.3 (8.3×) 24.6
TW 6295.9 (296.9×) 282.2 (13.3×) 210.2 (9.9×) 21.2
WU 86926.4 (368.9×)3817.6 (16.2×)2586.3 (10.9×) 235.6
L89 844.1 (234.5×) 38.3 (10.9×) 28.6 (7.9×) 3.6
L90 1322.9 (249.6×) 59.7 (11.3×) 43.5 (8.2×) 5.3

F
a
s
t
e
s
t
P
a
t
h

TX 23.7 (33.9×) 5.4 (7.7×) 4.6 (6.6×) 0.7
CA 44.5 (40.4×) 8.2 (7.5×) 6.9 (6.3×) 1.1
OF 35.2 (44.1×) 6.9 (8.6×) 5.8 (7.3×) 0.8
FL 94.9 (52.7×) 14.1 (7.8×) 12.4 (6.9×) 1.8
RE 718.8 (167.2×) 34.1 (7.9×) 28.4 (6.6×) 4.3

MAG 5959.5 (258.0×) 276.8 (12.0×) 229.1 (9.9×) 23.1
TW 6045.3 (256.2×) 274.4 (11.6×) 239.1 (10.1×) 23.6
WU 84582.7 (350.5×)3792.9 (15.7×)2820.3 (11.7×) 241.3
L89 797.2 (194.4×) 37.2 (9.1×) 27.7 (6.8×) 4.1
L90 1246.8 (201.1×) 58.1 (9.4×) 39.0 (6.3×) 6.2

massive chains can be activated for computing in a short

time, ensuring a higher degree of data parallelism. Note that

the CPU-based implementation of our approach only gains

1.5-3.2× speedups than TeGraph [18, 19], which is much

lower than the GPU-based implementation.

Figure 12 shows the ratio of the number of active ver-

tices to that of all vertices when running the shortest path.

From this figure, we have the following two findings. First,

TempGraph requires fewer iterations to converge in com-

parison with the other solutions. For example, over WebUK,

TempGraph converges in only 11 iterations, while Tigr-T and

Gunrock-T require more than 30 iterations. Second, the ratio

of TempGraph is higher than that of Tigr-T and Gunrock-T,

which means that TempGraph can better utilize the massive

parallelism and high bandwidth of GPU. Figure 13 shows
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Figure 12. Proportion of active vertices during execution
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Figure 13. Average GPU utilization ratio of various solutions for different temporal path problems
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Figure 14. End-to-end execution time of various solutions for different temporal path problems

Table 5. The LDBC datasets properties

Graph |𝑉 | |𝐸| Graph Size

LDBC-8_9 10.6 M 848.7 M 12.5 GB

LDBC-9_0 12.9 M 1.0 B 14.9 GB

LDBC-9_1 16.1M 1.3 B 19.2 GB

LDBC-9_2 434.9 M 1.0 B 44.7 GB

LDBC-9_3 555.3 M 1.3 B 58.2 GB

that TempGraph (68.4%-74.6%) obtains higher ratios than

Tigr-T (13.5%-18.6%) and Gunrock-T (14.7%-20.2%) under all

circumstances due to the higher data parallelism and faster

convergence speed of TempGraph.

End-to-End Performance. Figure 14 shows that Temp-

Graph achieves higher end-to-end performance than other

solutions when handling large-scale temporal graphs (e.g.,

WebUK). This is because extensive time-dependent chains of

these graphs can be concurrently handled by GPU, bringing

significant speedups to effectively mitigate the extra trans-

formation cost. In general, the one-time transformation time

and the computation time are reported separately [18, 19, 69,

70]. The following results only report the computation time.

5.3 Scalability of TempGraph
Figure 15 evaluates the performance of various solutions over

the five synthetic temporal graphs (generated by LDBC [23,

67]) with different graph sizes, where their properties are de-

tailed in Table 5. From Figure 15, we can find that the higher

performance improvement is obtained by TempGraph when

the size of the graph increases. This is because when han-

dling the larger temporal graphs, TempGraph enables more

time-dependent chains of the temporal graph to be handled

by GPU threads concurrently, ensuring higher parallelism.

This means that TempGraph is more effective for large-scale

temporal graph computing, ensuring good scalability.

To further evaluate the scalability of TempGraph, we lim-

ited the number of available SMXs during execution over

WebUK. As shown in Figure 16, we observe that Tigr-T and
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Figure 15. Performance of various solutions normalized to that of Tigr-T over LDBC-8_9

0 32 64 96 128
0

6

12

18

24

Earliest-arrival Path

Tigr-T      Gunrock-T   TempGraph

0 32 64 96 128
0

16

32

48

64

S
p

ee
d

u
p

(a) reachability
0 32 64 96 128

0

16

32

48

64

0 32 64 96 128
0

16

32

48

64

0 32 64 96 128
0

16

32

48

64

(c) shortest path(b) earliest-arrival path (d) fastest path
Figure 16. Performance of different solutions running with different numbers of SMXs (ranging from 1 to 128)

V 1 0 0 A 1 0 0 H 1 0 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

No
rm

aliz
ed 

exe
cut

ion
 tim

e T i g r - T G u n r o c k - T T e m p G r a p h

Figure 17. The performance

of shortest path over WebUK
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Figure 18. Execution time with/without

our GPU-friendly layout optimization
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Figure 20. Time

breakdown

Gunrock-T experience slow performance improvement as

the number of available SMXs increases. This is because that

the vertices of the temporal graphs need to be processed

along the temporal order sequentially. Therefore, in existing

solutions, the vertex states are slowly propagated along the

inherent time-dependent chains and only a very small per-

centage of vertices are active during execution, resulting in

a large number of SMXs sitting idle. In contrast, TempGraph

can efficiently decouple the temporal dependency among

the chains and use the shortcuts to quickly drive massive

chains for parallel computing, which boosts a higher degree

of data parallelism (which means fewer SMXs sitting idle).

As depicted in Figure 16, when the number of available SMXs

increases, TempGraph achieves considerable performance

improvement until the number of available SMXs equals 96,

while this number is around 8 for both Tigr-T and Gunrock-T.

Besides, Figure 17 further depicts that TempGraph consis-

tently outperforms other solutions across various GPU types

and can achieve greater speedups on more advanced GPUs.

5.4 Performance of Layout Optimization
Figure 18 evaluates the impacts of our layout optimization

(detailed in §4.4) on the performance of TempGraph, where

TempGraph-without is the version of TempGraph that dis-

enables our layout optimization. The results indicate that

our proposed layout optimization yields performance im-

provements for TempGraph-without, achieving 1.08-1.26×

Table 6. The large-scale temporal graphs properties

Graph |𝑉 | |𝐸| Graph Size

LDBC-9_4 (L94) 29.3 M 2.6 B 92.8 GB

LDBC-sf3k (L3k) 33.5 M 2.9 B 114.5 GB

LDBC-sf10k (L10k) 100.2 M 9.4 B 286.2 GB
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Figure 21. Performance on dynamic temporal graphs

speedups. This is because the enhanced memory locality

of our optimization can ensure efficient coalesced accesses,

fully exploring the high memory bandwidth of GPU.

5.5 Performance of Out-of-GPU-Memory Processing
Figure 19 shows the performance of TempGraph compared

to that of the cutting-edge out-of-GPU-memory solutions

LargeGraph-T and HyTGraph-T when handling large-scale

temporal graphs in Table 6. LargeGraph-T and HyTGraph-T

are the versions of cutting-edge out-of-GPU-memory graph

processing systems LargeGraph [77] andHyTGraph [65] that

incorporate [18, 19, 56]. The results show that TempGraph

outperforms LargeGraph-T and HyTGraph-T by 6.2-14.7×
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and 3.3-8.7×, respectively. Figure 20 further decomposes the

total computation time of TempGraph into the time taken by

CPU-GPU data transfer, GPU computation, and overlapping

phases. The results show that 55.3%–79.8% of CPU-GPU data

transfer time can be overlapped in TempGraph.

5.6 Performance on Dynamic Temporal Graphs
Figure 21 evaluates the end-to-end execution time of shortest

path over dynamic temporal graphs. Similar to [19], these

dynamic graphs are modeled using static graphs with a batch

size set to 100 K. This figure shows that TempGraph can

achieve higher performance in comparison to other solutions

on large-scale dynamic temporal graphs (e.g., WebUK). This

is because extensive time-dependent chains of these graphs

can be concurrently handled by TempGraph, resulting in

significant speedups. This way, the extra re-transformation

cost caused by graph updates can be effectively mitigated.

6 Related Work
CPU-based Graph Processing Systems. Over the past

decade, numerous CPU-based graph processing systems [12,

34, 36, 42, 43, 49, 50, 59, 72, 78] have been designed. Pregel [39]

stands out as one of the earliest distributed systems, using

synchronous executionmodel for graph algorithms. CoRAL [61]

and FBSGraph [76] adopt asynchronous execution to ensure

fast state propagation and diminish synchronization costs.

GraphChi [31] and X-Stream [52] achieve efficient out-of-

core graph processing by sequentially accessing storage. To

reduce disk I/O cost, Vora et al. [60, 62] propose the dynamic

partition and cross-iteration value propagation technique. To

reduce repeated graph transfer across the memory hierarchy,

Input reduction [30], Wonderland [75], and Core Graph [25]

derive a smaller graph for a large graph and employ a two-

phase processing method. Pingali et al. [48] try to explore

parallelism for irregular applications. However, when ap-

plied to temporal graph computing, these solutions incur

substantial redundant costs. Besides, the sequential vertex

state propagation along temporal dependencies still incurs

issues of poor parallelism and slow convergence speed.

GPU-based Graph Processing Systems. The powerful
ability of GPU has prompted researchers to propose many

GPU-based graph processing systems [15, 27, 35, 37, 81].

Medusa [83] exemplifies the capabilities of GPU-based graph

processing. Gunrock [66] performs computation with a data-

centric frontier-focused abstraction. LargeGraph [77] uses a

path-based approach to handle static graphs on GPU. How-

ever, when processing temporal graphs, LargeGraph still

suffers from poor parallelism and slow convergence speed

due to inherent time dependencies between paths. To al-

leviate the irregularity of graphs, Tigr [53] proposes a vir-

tual transformation scheme to achieve efficient execution

on the GPU. To handle large graphs, Subway [54] dynami-

cally compacts the valid data at runtime to reduce host-GPU

communications. To maximize the utilization of host-GPU

bandwidth, HyTGraph [65] presents a hybrid data transfer

method. However, these systems are mainly designed to pro-

cess static graphs. When employing them to handle temporal

graphs, they suffer from significant redundant data access

and computation overhead due to the costly extra operations

required to guarantee time constraints.

Temporal Graph Computing Systems. To efficiently

handle temporal graphs, many temporal graph computing

systems have been proposed recently [9, 41, 68–70]. Chronos [16,

44] uses a locality-aware scheduling method to exploit better

data locality. Dynamograph [57] extends Pregel to process

large-scale temporal graphs. However, they mainly apply

static execution model and gain suboptimal performance

due to high time complexity. Thus, some systems use a

transformation-based executionmodel for better performance.

ICM [10] extends Pregel to intuitively compose and execute

time-dependent graph algorithms, while WICM [1] tries to

reduce redundant computations and communications. To fur-

ther reduce redundant overhead, TeGraph [18, 19] presents

a temporal information-aware approach. Srikanth et al. [56]

try to accelerate fastest path problem via implementing GPU-

based parallel algorithms. Everest [74] focuses onmaking use

of the temporal constraints to generate motif-specific mining

code on GPU. However, due to the time constraints of tempo-

ral path problems, they still suffer from poor data parallelism

and slower convergence speed, struggling to fully utilize the

massive parallelism and high internal bandwidth of GPU. In

contrast, TempGraph decouples the temporal dependencies

among the data and allows these data to be efficiently han-

dled by massive GPU threads in parallel, achieving higher

data parallelism and faster convergence speed.

7 Conclusion
This paper proposes a novel GPU-based temporal graph

computing framework TempGraph to handle temporal path

problems efficiently. Specifically, it transforms the temporal

graph into a set of disjoint time-dependent chains and decou-

ples the temporal dependency among these chains. By such

means, it enables the vertex state to be quickly propagated

along these chains and drives these chains to be concurrently

handed by massive GPU threads, ensuring fast convergence

speed and high parallelism on the GPU. The experimental

results show that TempGraph improves the performance by

up to 16.2× over the cutting-edge GPU-based solutions.
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