Check for
Updates

TempGraph: An Efficient Chain-driven Temporal
Graph Computing Framework on the GPU

Jin Zhao*
Huazhong University of Science and
Technology
Wuhan, China
zjin@hust.edu.cn

Yu Zhang”*
Huazhong University of Science and
Technology
Wuhan, China
zhyu@hust.edu.cn

Xinlei Wang*
Huazhong University of Science and
Technology
Wuhan, China
xinleiwang@hust.edu.cn

Longlong Lin
Southwest University
Chongging, China
longlonglin@swu.edu.cn

Qian Wang
Huazhong University of Science and
Technology
Wuhan, China
gianwang77@bhust.edu.cn

Sheng Di
Argonne National Laboratory
Lemont, IL, USA
sdi@anl.gov

Hui Yu*
Huazhong University of Science and
Technology
Wuhan, China
huiy@hust.edu.cn

Linchen Yu
Huazhong University of Science and
Technology
Wuhan, China

Ligang He
University of Warwick
Coventry, United Kingdom
ligang.he@warwick.ac.uk

Bingsheng He
National University of Singapore
Singapore
hebs@comp.nus.edu.sg

Hao Qi*
Huazhong University of Science and
Technology
Wuhan, China
thegihao@hust.edu.cn

Xiaofei Liao™
Huazhong University of Science and
Technology
Wuhan, China

linchenyu@hust.edu.cn

xfliao@hust.edu.cn

Hai Jin*
Huazhong University of Science and
Technology
Wuhan, China
hjin@hust.edu.cn

Abstract

Tackling temporal path problems in temporal graphs is essen-
tial for time-sensitive applications. Although many solutions
have been proposed to handle temporal path problems, due

* National Engineering Research Center for Big Data Technology and Sys-
tem, Services Computing Technology and System Lab, Cluster and Grid
Computing Lab, School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan, 430074, China.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS 25, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-1080-3/2025/03
https://doi.org/10.1145/3676642.3736116

230

to the intrinsic time constraints, these solutions require the
vertices of the temporal graph to be sequentially handled
along the time-dependent chains (i.e., the temporal depen-
dencies between these vertices) to form the temporal path.
This sequential temporal nature poses the challenges of poor
parallelism and slow convergence speed, preventing existing
solutions from fully leveraging the massive parallelism and
high internal bandwidth of GPU to handle temporal path
problems. To overcome these challenges, this paper proposes
TempGraph, an efficient chain-driven GPU-based temporal
graph computing framework. Specifically, it transforms the
temporal graph into a set of disjoint time-dependent chains
that can elegantly expose the temporal dependency between
the vertices while facilitating the fast path exploration along
these chains over GPU. Furthermore, TempGraph employs
a novel Generate-Activate-Compute execution model to de-
couple the temporal dependency between different chains
through maintaining a set of shortcuts for them, which en-
ables multiple chains to be concurrently handled by massive
GPU threads, achieving fast convergence speed and high

https://doi.org/10.1145/3676642.3736116
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3676642.3736116&domain=pdf&date_stamp=2025-08-06

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

parallelism on the GPU. Experiments on an A100 GPU show
that TempGraph outperforms the state-of-the-art GPU-based
solutions by 3.0-16.2x. Besides, TempGraph on an A100 GPU
gains 33.9-368.9x speedups compared to the cutting-edge
CPU-based system TeGraph on a 128-core CPU machine.

CCS Concepts: - Computing methodologies — Parallel
computing methodologies; - Computer systems orga-
nization — Parallel architectures.

Keywords: Temporal graph computing; GPU; Data paral-
lelism; Convergence speed

ACM Reference Format:

Jin Zhao, Qian Wang, Ligang He, Yu Zhang, Sheng Di, Bingsheng He,
Xinlei Wang, Hui Yu, Hao Qi, Longlong Lin, Linchen Yu, Xiaofei
Liao, and Hai Jin. 2025. TempGraph: An Efficient Chain-driven
Temporal Graph Computing Framework on the GPU. In Proceedings
of the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3 (ASPLOS
’25), March 30-April 3, 2025, Rotterdam, Netherlands. ACM, New York,
NY, USA, 17 pages. https://doi.org/10.1145/3676642.3736116

1 Introduction

Many real-world graphs are temporal in nature, meaning
their edges are annotated with temporal information [28, 46],
and such graphs are referred to as temporal graphs. This tem-
poral information serves as a crucial metric for data analytics
in many domains such as transportation networks [7], so-
cial media [45], real-time epidemiology analysis [82], and
e-commerce [29]. Figure 1 (a) depicts a temporal graph for
an aviation network, where the time interval [4, 5) of the
edge I—] signifies the occurrence of a flight departing from
I at time 4 and arriving at J at time 5. The temporal path
problems in the temporal graphs constitute the foundational
components for numerous time-sensitive applications. For
instance, the temporal path problems is crucial for optimiz-
ing routes in traffic navigation [56], tracking the spread of
information in social network [63], modeling disease trans-
mission in health informatics [40], and detecting anomalies
in financial networks [38]. A temporal path is a legal path
under temporal constraints [18-20, 56], where the time se-
quence along this path is strictly increasing. For example, to
find a legal path in an aviation network, the arrival time must
be earlier than the departure time at each transit airport.
The wide applicability and criticality of application do-
mains necessitate high performance for tackling temporal
path problems. Due to their massive data parallelism, GPUs
have become the most widely adopted general-purpose accel-
erator [11] and thus are attractive for accelerating temporal
graph computing (as discussed in §2.2). Recently, many tem-
poral graph computing engines [18, 19, 56, 68—70], primarily
designed for CPU platforms, have emerged, typically follow-
ing two execution models. The first model adapts static graph
algorithms, e.g., Bellman-Ford [2] or Dijkstra’s algorithm [8],

231

Jin Zhao et al.

(a) Temporal Graph
Figure 1. An example of aviation network

(b) Transformed DAG

by additionally considering time constraints. This static exe-
cution model can be implemented using existing GPU-based
static graph processing systems [15, 27, 35, 37, 53, 54, 65, 66,
81]. However, it suffers from significant redundant data ac-
cess and computational overhead due to the costly additional
operations required to guarantee time constraints [1, 18, 19].
To address these problems, a transformation-based execution
model [18, 19, 21, 68, 70] has been proposed. It transforms
the temporal graph into a Directed Acyclic Graph (DAG) by
embedding timing information into the vertices (as illustrate
in Figure 1(b)). By this way, the time constraints are natu-
rally reflected by the topological structure of the transformed
DAG, which enables to guarantee time constraints with much
lower extra overhead. As a result, it demonstrates better
performance than static execution model [18, 19]. However,
naively implementing this advanced CPU-oriented execution
model on GPU to accelerate temporal graph computing is
still inefficient (§2.3), because the inherent time constraints
of temporal path problems may easily make it underutilize
the computing power and memory bandwidth of the GPU.
The resource underutilization primarily arises from the
sequential nature of vertex state propagation along the time-
dependent chains (i.e., the temporal dependencies between
the vertices of the legal path) in the temporal graphs. Specif-
ically, each vertex is allowed to propagate its state to its
direct neighbor (i.e., this neighbor can be handled) only if its
timestamp is earlier than that of this neighbor. This unique
characteristic gives rise to two fundamental challenges. First,
the inherent time constraints restrict the state propagation
between the vertices of the temporal graphs, resulting in
only a very small fraction of vertices (less than 6.2% in our
characterization) being active in each iteration. Such poor
parallelismleads to a large number of GPU threads remaining
idle. Second, the long time-dependent chains mean that each
vertex requires many iterations to propagate its state to its in-
direct neighbors to trigger the processing atop them, leading
to slow convergence speed. Consequently, these challenges
cause the massive parallelism and high internal bandwidth of
GPU to be considerably underutilized, incurring a low GPU
utilization (less than 26.4% based on our characterization).
To address the above challenges, we propose a GPU-based
temporal graph computing framework TempGraph that can
efficiently handle the temporal path problems by fully ex-
ploiting the parallelism potential of GPU. Specifically, Temp-
Graph transforms the temporal graph into a set of disjoint

https://doi.org/10.1145/3676642.3736116

TempGraph: An Efficient Chain-driven Temporal Graph Computing Framework on the GPU ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

time-dependent chains that can elegantly expose the tempo-
ral order of edges, offering an opportunity for facilitating the
fast vertex state propagation along these chains over GPU,
where each time-dependent chain is treated as the basic par-
allel processing unit. Moreover, TempGraph features a novel
chain-driven Generate-Activate-Compute (GAC) execution
model to decouple the temporal dependency among different
chains by generating a shortcut between the head vertex and
tail vertex of each chain. The shortcuts corresponding to dif-
ferent chains can be generated using massive GPU threads in
parallel. Through these generated shortcuts, the head vertex
of each chain can directly propagate its state to the tail vertex
of this chain. Then, the other chains originating from this
tail vertex can be immediately activated and computed with-
out waiting for slow state propagation along the temporal
order sequentially. As such, each vertex can propagate its
state to other vertices via much fewer iterations and massive
chains of the temporal graph can be handled by GPU threads
concurrently, ensuring fast convergence speed and high data
parallelism when handling temporal path problems. Besides,
TempGraph employs a temporal-dependency-aware parti-
tion scheduling method along with asynchronous CPU-GPU
data transfer to efficiently support out-of-GPU-memory pro-
cessing of large-scale temporal graphs.

We conduct extensive experiment on both real-world and
synthetic datasets. The results demonstrate that TempGraph
on an NVIDIA A100 GPU achieves 33.9-368.9x speedups
compared to the cutting-edge CPU-based solution, i.e., Te-
Graph [18, 19], on a 128-core Intel CPU machine. Besides,
TempGraph outperforms the cutting-edge GPU-based solu-
tions (i.e., the state-of-the-art GPU-based static graph pro-
cessing systems Tigr [53], Gunrock [66], LargeGraph [77],
and HyTGraph [65] that incorporate the cutting-edge tem-
poral graph computing techniques [18, 19, 56]) by 3.0-16.2x
on an NVIDIA A100 GPU.

2 Background and Motivation
2.1 Temporal Graph Computing
Temporal Graph. Different from static graphs, each edge
in temporal graphs has a lifespan with a starting time and an
ending time, which indicate the corresponding time interval
of existence for this edge. Formally, a temporal graph can be
represented by G=(V, E), where V denotes the set of vertices
and E is the set of edges. For each edge e in E, we define it as
e=(u, 0, t,t") (or e=(u, v, t, ', w) for weighted edge), where u,
v € V and there exists an edge from u to v starting at time ¢
and ending at time t’. Furthermore, a path P={ey, ey,..., e,} in
the temporal graph is called a legal path when P meets the
condition: e;=(u;, v;, t;, t]), ej=(u;, v}, t}, t]’.), if i<j, then t/<t;.
For example, in Figure 1(a), a legal path can move from the
edge (C, B, 5, 6) to (B, D, 6, 7), but cannot to (B, A, 3, 4).
Temporal Path Problems. Many real-world time-sensitive
applications primarily aim to tackle temporal path problems
on their temporal graphs [45, 6870, 80]. We list several most

232

representative temporal path problems as follows [26, 68],
where each problem involves a single-source query. Given
avertex u € V and a time interval [start, end], the temporal
path problem is to find the temporal path P between the
time interval (i.e., start < start(P) and end(P) < end) for each
vertex v € V, where P must satisfy the following conditions.

e Reachability: Reachability from u to v means that P(u,
v) is not empty, where P(u, v) = {P : P is a temporal
path from u to v}.

e Earliest-arrival Path: P € P(u, v) is the earliest-arrival
path between u and v if end (P)=min{end(P"):P’€P(u,v)}.

o Fastest Path: P € P(u, v) is the fastest path between u
and v if duration(P)=min{duration(P"):P’€P(u,v)}.

e Shortest Path: P € P(u, v) is the shortest path between
u and v if dist(P) = min{dist(P") : P’ € P(u,v)}.

e Top KNearest Neighbors: YueK and YoeV /K, score(u)
<score(v), then K is the set of k-nearest neighbors of
the vertex x. score(u) is a self-defined measure func-
tion, e.g., the shortest path from x to u.

Execution Model of Temporal Graph Computing.
Two main execution models are used in the literature [1, 10,
18, 19, 68, 70] to tackle temporal path problems.

Static Execution. It directly employs traditional static graph
algorithms, such as Dijkstra’s [8] or Bellman-Ford [2], ap-
plied through existing static graph processing systems [53—
55, 66], to address temporal path problems by incorporating
time constraints. Nevertheless, it suffers from significant re-
dundant data access and computation cost [1, 18, 19], because
the costly extra operations are required to guarantee time
constraints. For example, when exploring the legal paths
originating from C in Figure 1 (a), the edges (B, A, 3, 4), (B, C,
3, 4), and (B, F, 3, 4) need to be loaded and processed within
the static execution model, despite the fact that these edges
do not satisfy the timing constraints in this case.

Transformation-based Execution. It expands each vertex
of the temporal graph into multiple vertices with the same
vertex ID but different timestamps based on temporal infor-
mation [10, 18, 19]. This expansion facilitates the transfor-
mation of the temporal graph into an equivalent Directed
Acyclic Graph (DAG), where the topological structure of this
DAG can directly reflect the timing constraint as shown in
Figure 1 (b). We can find that the illegal path from C to A via
B is naturally eliminated in Figure 1 (b), which avoids the
redundant overheads in the static execution model. Then, the
legal temporal paths can be explored through a universal sin-
gle scan over the transformed DAG [18, 19], i.e., sequentially
scanning the vertices of this DAG along their topological
order, which incorporates all essential time constraints.

2.2 The Need for GPU Acceleration

Many real-world scenarios are time-sensitive [6, 18, 19, 56,
68-70]. For instance, recommendation systems need to fre-
quently examine the shortest path among the users in a large
temporal network extracted from the shopping logs (e.g.,

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands Jin Zhao et al.

| - sssp —-— Shortest Path
__ 100 100 100— : : : : 100
& 601 | 60 § ~ 1 60 / — 1 601 . |
g o 40| : PR R el A am
I S 200 e 1204 / N\ 1 204 \ |
S DR SPUO TN T oo 0besirasasrasiibrarnesst Qlirasrooslinnr s il Obirerseatire i,
1 5 10 15 20 25 30 1 5 10 15 20 25 30 1 5 10 15 20 25 30 1 5 10 15 20 25 30
Iteration Iteration Iterati?n Iteration,
(a) RoadNet-TX (b) RoadNet-CA (c) OpenFlights (d) FlightList
__ 100 - 100+— : : : : 100 - 100 -
§ 60{ |\ | ~ { 60 71 60 601 IR =
§ 40{ [W} 1 40 FON /1 a0 AN 40/ [\4 S
S 200 |) S 20 f N A () 20{ /O)
T Oingemmsrtonsssansienss. 0ot O T e
1 5 10 15 20 25 30 1 5 10 15 20 25 30 1 5 10 15 20 25 30 1 5 10 15 20 25 30
Iteration Iteration Iteration Iteration
(e) Reddit (f) MAG (g) Twitter (h) WebUK

Figure 2. Comparison of the proportion of active vertices of the Single Source Shortest Path (SSSP) and the shortest path, where
the SSSP disregards the temporal information and the shortest path is executed under time constraints, respectively

more than 1.5 billions sales orders are created in Alibaba’s |—=— Tigr Gunrock Tigr-T —v— Gunrock-T|
Singles’ Day Shopping Festival [33, 64]) with sub-second 67 ' T ig: T
latency, as part of interactive requests [14, 51, 71]. However, Sl V//v/ra—v—v—v—‘ 8]
our results reveal that existing CPU-based solutions take over g 5] 1 izﬁw 1
6 seconds to perform a single shortest path query in a tempo- 2] i 2]

ral graph with about 1 billion edges, making it challenging to O 6 8 10121216 2 4 6 810121416
meet time demands. Besides, some applications perform mas- Number of SMXs Number of SMXs

Figure 3. Performance of various solutions over FlightList
and WebUK normalized to that of Tigr with one SMX

dimension is considered, which indicates lower achievable

sive numbers of queries on common graphs [18, 56, 73, 79],
further exacerbating this challenge. For example, between-
ness centrality [4, 47] scenarios launch many independent
shortest path queries (each from a random vertex) on the parallelism can be achieved when processing each vertex.
same temporal graph to measure the relative importance As a result, compared to static graph processing, the con-
of vertices. To address these performance demands, GPUs strained state propagation in temporal graph computing
present a promising alternative to CPU-based solutions due incurs a significantly smaller ratio of active vertices in each

to their higher compute throughput and memory bandwidth. iteration. As shown in Figure 2, the ratio of active vertices of
temporal graph computing is less than 6.2%, which is much
2.3 Challenges of Efficient Temporal Graph lower than that of traditional static graph processing (up to
Computing on GPU 92.2%). This indicates that a large number of GPU threads
During the temporal graph computing procedure, the main will sit idle when serving temporal graph computing, sig-
operation is to explore the legal paths under time constraints. nificantly underutilizing the massive parallelism and high
Although many techniques [18, 19, 68-70, 80] have been internal bandwidth of GPU.
designed to enhance the computation and memory efficiency Challenge #2 (Slow Convergence Speed): The inher-
of temporal graph computing, naively porting these CPU- ent time constraints of the temporal path problems necessitate
targeted temporal graph computing solutions to GPU is still that the vertices of the temporal graph be handled sequen-
inefficient due to the following challenges. tially along the temporal dependencies among them, leading
Challenge #1 (Poor Parallelism): The inherent time con- to more iterations needed for convergence. Taking Figure 1(b)
straints of the temporal path problems restrict the state prop- as an example and assuming (B, 3) is the root vertex for the
agation between the vertices of temporal graphs, resulting in shortest path, the vertices (C, 5), (B, 6), and (D, 7) can be
only a small percentage of vertices being active in each iter- handled when (B, 3) has sequentially propagated its state
ation. Taking Figure 1(a) as an example, the state of vertex to them along the time-dependent chain (B, 3)—(C, 5)—(B,
B cannot be propagated to A to trigger the processing of A 6)—(D, 7), which takes three iterations. Consequently, this
when exploring a temporal path originating from C. This leads to slow state propagation along the inherent temporal
is because the ending time of the edge (C, B, 5, 6) is later dependencies among the vertices. Moreover, the transformed
than the starting time of the edge (B, A, 3, 4). In contrast, graphs typically exhibit larger diameters than the original
traditional static graph processing disregards temporal infor- temporal graphs [10, 18, 19], which necessitates more itera-
mation and allows state propagation from B to A to trigger tions for convergence. Figure 2 shows that the shortest path
the processing of A. That is, the average degrees of the real- requires more than 30 iterations over WebUk for conver-
world temporal graphs will be reduced when the temporal gence, whereas SSSP needs only 16 iterations. Furthermore,

233

TempGraph: An Efficient Chain-driven Temporal Graph Computing Framework on the GPU ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

5

S Tigr Gunrock Tigr-T Gunrock-T |
9O 304
B
%

5 20+ % 2 7 7 7
®
N
= 10
=
2 ol ~

TR SR g i gt ; 89,099
O oaNaNE SaP OG- T geddt AG it W oBCB 0pCo-

Figure 4. Average GPU utilization ratio of various solutions

the sequential state propagation along the temporal depen-
dencies causes many vertices to remain inactive during exe-
cution, exacerbating the challenge of poor parallelism. For
instance, only 0.036% of the vertices are active in the 30th
iteration of the shortest path over WebUk.

Results. We evaluate four cutting-edge GPU-based graph
computing systems, i.e., Gunrock, Tigr, Gunrock-T, and Tigr-
T, when running the shortest path over different temporal
graphs. Note that Gunrock-T and Tigr-T are the versions of
Gunrock [66] and Tigr [53] optimized by the state-of-the-art
temporal graph computing solutions [18, 19, 56]. The details
of the platform and benchmarks used in this evaluation are
introduced in §5.1. Gunrock and Tigr handle the shortest
path using the static execution model, while Gunrock-T and
Tigr-T apply the transformed-based execution model. Fig-
ure 3 evaluates the performance of various solutions running
with different numbers of Streaming Multiprocessors (SMXs).
Although Gunrock-T performs better than other solutions
under all circumstances, its performance improvement still
has plateaued as soon as the number of SMXs equals 8 ! due
to the poor parallelism and slow convergence speed. As a
result, existing solutions struggle to utilize the massive data
parallelism and high internal bandwidth of GPU (e.g., the
GPU utilization ratio is less than 26.4% as shown in Figure 4)
when handling temporal graph computing.

3 Overview of TempGraph

To address the challenges in §2.3, we propose an efficient
GPU-based temporal graph computing framework, called
TempGraph. It transforms a temporal graph into a set of dis-
joint time-dependent chains and then efficiently decouples
the temporal dependency among these chains via a novel
chain-driven Generate-Activate-Compute (GAC) execution
model. In this way, it enables multiple chains to be efficiently
handled by GPU threads in parallel and achieves fast state
propagation. This is fundamentally different from existing
solutions on GPU, which sequentially handle the edges of
the temporal graph along the temporal dependencies among
them. In this section, we describe our execution model and
the system architecture of TempGraph in detail.

IMainstream GPU accelerators usually have far more than 8 SMXs. For
instance, an NVIDIA Tesla P100 has 56 SMXs, while an A100 has been
integrated with 128 SMXs.

234

— Temporal edge
» Generated shortcut

(a) Transformed DAG
|

Shortcut)
I

(b) Chain and its shortcut (c) Skeleton-graph
Figure 5. [llustration of chain-driven parallel execution

3.1 Chain-driven Parallel Execution Model

In this subsection, we first present two fundamental concepts
and then propose our chain-driven GAC execution model
for efficient temporal graph computing on GPU.

Basic Concepts. Definition 1 (Time-dependent Chain):
Given a temporal graph G=(V, E), we represent G = Ucp,cch
Chy, where Ch is a set of disjoint time-dependent chains, and
Chy = (vx, tx)—...—(vy, ty) is a sequence of connected ver-
tices that guarantee the time constraints, i.e., ty <... < ty. lis
the chain ID. Moreover, for any two time-dependent chains,
e.g., Ch) = (v, £3)—..>(vy, t) and Ch) = (v, £/)—>..—>(vy,
t,/), they should ensure that Ch; N Ch}" C{(v}, ty), (vy, 1)} N
{0y, £Y), (vy, t;)}. It means that the intersections of any two
chains are only the intersections of the head and tail vertices
of these two chains. For faster convergence rate, the disjoint
time-dependent chains are the longest chains that satisfy the
above conditions. In this way, each time-dependent chain
(e.g., (A, 1)—(H, 2)—(B, 3) in Figure 5(a)) can be efficiently
handled by a GPU thread to achieve fast state propagation.

Definition 2 (Hub-vertex and Skeleton-graph): We define
the set of head vertices of all time-dependent chains as hub-
vertices, e.g., the vertex (A, 1) in Figure 5(a). Therefore, each
hub-vertex meets one of the following three conditions: 1)
its in-degree is equal to zero; 2) its in-degree is greater than
one; 3) its out-degree is greater than one. When we generate
a shortcut (e.g., (A, 1)—(B, 3) in Figure 5(b)) for the head and
tail vertices of each time-dependent chain (i.e., (A, 1)—(H,
2)—(B, 3)), the new state of each hub-vertex (e.g., (4, 1)) is
able to immediately influence another one (i.e., (B, 3)) and
then quickly drive more chains (i.e., (B, 3)—(A, 4)—(K, 6),
(B, 3)—(C, 5)—(B, 6)—(D, 7), and (B, 3)—(F, 6)—(D, 7)) to
be concurrently handled by massive threads of GPU. These
shortcuts are used to construct the skeleton-graph, denoted
as Gs, as shown in Figure 5(c).

Chain-driven GAC Parallel Execution. In this execu-
tion model, the temporal graph is represented as a series
of disjoint time-dependent chains, which are taken as the
basic parallel processing unit. The processing of these chains
consists of three stages: skeleton-graph generating, shortcut-
guided chain activating, and chain-based parallel computing,
which are formalized as follows.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Temporal Path Problems
Reachability| |Ear|iest—arrival Path| |Shortest Path| |Fastest Path| -

TempGraphl Programming Interfaces
Shortcut-guided Chain Scheduler

_ _ Chain_Queue
(| Chain Computing Skeleton-graph
E Engine Computing Engine
(U] £ T
T Time-dependent Skeleton-graph

Chains " Generator [—"|SKeleton-graph
= ERS
= ; Chain-based .
2 Tlme-dependent L Temporal Graph'_temo(l;lrgallnarla X
I Chains Transformer poral grap

Figure 6. TempGraph architecture

Skeleton-graph Generating. For each time-dependent chain

Chi=(vx, tx)—. . .—(vy, t,), it generates a corresponding short-

cut S;: (vy, tx)—(vy, t,) between Ch;’s head and tail vertices.
The weight of each shortcut is calculated according to the
specific temporal path problems, because they may use differ-
ent formulae to calculate the state. For example, the weights
corresponding to the shortcut (vx, tx)—(vy, ty) are Y .ccn, We
and }.ccp, duration(e) for shortest path and fastest path,
respectively, where e is an edge in Ch;, W, is the weight of e,
and duration(e) is the duration of e, respectively. The gen-
eration of the shortcuts for different time-dependent chains
can be performed in parallel, because their calculations do
not depend on each other. Finally, all constructed shortcuts
are used to construct the skeleton-graph Gs=(V;, E;), where
Vs is the set of hub-vertices and E; is the set of shortcuts.
Shortcut-guided Chain Activating. To enable different time-
dependent chains to be handled in parallel, it immediately
propagates the new state of the active vertex to the head
vertex of each time-dependent chain (i.e., hub-vertices) using
the shortcuts of skeleton-graph Gs. Specifically, it assigns the
shortcuts of G; to be handled according to their topological
order and performs the following operation for each short-
cut (e.g., Si: (0x, tx)—(vy, ty)): (vx, tx).state <Propagate(S;),

where (v, t).state is the state of the vertex (v, t) and Propagate(x)

denotes the operation that propagates the new state of the

vertex (vy, ty) based on the shortcut S;. Note that the Propagate

operation is determined by the specific temporal path prob-
lems. In this way, the head vertices of multiple time-dependent
chains will be quickly activated, thereby driving these chains
to be concurrently handled by massive threads of GPU.
Chain-based Parallel Computing. When the time-dependent
chains are activated, their IDs will be maintained in an active
chain queue, i.e., Chain_Queue. After that, these activated
chains will be allocated to the GPU threads for parallel pro-
cessing, where each chain is assigned to be handled by a
GPU thread. In this way, the GPU can concurrently handle
different chains to exploit its high parallelism fully. Further-
more, the new state of each vertex (e.g., (A, 1) in Figure 5) can
be immediately propagated to its successors (i.e., (H, 2) and
(B, 3) in Figure 5) along the same chain with one iteration.

235

Jin Zhao et al.

Table 1. APIs of TempGraph

APIs Description

VInitial() Initializing the state of each vertex

GenerateShortcut()|Generating the shortcut for each chain

Propagate() Propagating the vertex state along each
shortcut or each edge of the chain

3.2 System Architecture

Figure 6 shows the architecture of TempGraph, which has
the following three main components.

Chain-based Temporal Graph Transformer. The orig-
inal temporal graph is usually represented in the edge-list
format [68, 69]. Before the execution, it first transforms the
original temporal graph as a DAG by expanding each ver-
tex based on the timing information [10, 18, 19]. Then, the
transformer partitions the DAG into a series of disjoint time-
dependent chains. Specifically, it identifies the hub-vertices
and then concurrently takes these hub-vertices as the roots
to explore the DAG so as to construct time-dependent chains.
Next, these constructed chains will be transferred into GPU
memory for processing. Note that the temporal graph needs
to be transformed into the time-dependent chains only once,
and then these chains can be reused by different applications.

Skeleton-graph Generator. It generates the shortcuts
for time-dependent chains and then uses these generated
shortcuts to construct the skeleton-graph. To improve con-
struction efficiency, it assigns multiple GPU threads to calcu-
late the weights of the shortcuts in parallel by concurrently
conducting the user-specified operation over multiple chains.
Note that the shortcut is generated only if the correspond-
ing chain contains more than two vertices, otherwise the
corresponding temporal edge is directly used to construct
the skeleton-graph. Then, the constructed skeleton-graph
is maintained in GPU memory to guide the parallel com-
puting of the chains. Although generating shortcuts incurs
extra runtime overhead, it can effectively leverage massive
GPU threads to minimize this cost. More importantly, it en-
ables more chains to be parallelly computed by the GPU
during execution (introduced later), significantly boosting
the performance of temporal graph computing on GPU.

Shortcut-guided Chain Scheduler. TempGraph employs
two separate graph computing engines to handle the skeleton-
graph G; and the time-dependent chains Ch, respectively.
During the execution, the skeleton-graph computing engine
handles the shortcuts along their topological order in G;. In
this way, the time-dependent chains will be quickly activated
for processing. The IDs of these activated chains are then
stored in the Chain_Queue. Meanwhile, the chain computing
engine takes the chains in the Chain_Queue for parallel pro-
cessing, and each activated chain is assigned to be handled
by a single GPU thread. By such means, the high parallelism
of GPU can be fully exploited to process the temporal graph.

Programming APIs. TempGraph provides several APIs
(detailed in Table 1) for users to implement temporal path

TempGraph: An Efficient Chain-driven Temporal Graph Computing Framework on the GPU ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

template<typename T>

/' Using the edge ej=<(vj, tj), (vi, ti)> to generate the

shortcut

_ device__ T GenerateShortcut(Edge ej, Shourtcut S;){
return 0

} }

template<typename T>

/' Using the edge ej=<(vj, tj), (vi, ti)> to generate the

shortcut

__device__ T GenerateShortcut(Edge ej, Shourtcut S;){
return ti

/I Processing the edge ej=<(vj, tj), (vi, ti)> to propagate

the state of (vj, tj) to that of (vi, ti)

__device__ T Propagate(Vertex (vj, tj), Vertex (vi, ti)){
return min(vj.state, 0)

11 Processing the edge ej=<(vj, tj), (vi, ti)> to propagate

the state of (vj, tj) to that of (vi, ti)

__device__ T Propagate(Vertex (vj, tj), Vertex (vi, ti)){
return min(vj.state, ti)

template<typename T>

/I Using the edge ej=<(vj, tj), (vi, ti)> to generate the

shortcut

__device__ T GenerateShortcut(Edge ej, Shourtcut S;){
return S, + dist(ej)

template<typename T>

/I Using the edge ej=<(vj, tj), (vi, ti)> to generate the

shortcut

__device__ T GenerateShortcut(Edge ej, Shourtcut S;){
return S, + duration(ej)

}

/I Processing the edge ej=<(vj, tj), (vi, ti)> to propagate

the state of (vj, tj) to that of (vi, ti)

__device__ T Propagate(Vertex (vj, tj), Vertex (vi, ti)){
return min(vj.state, vi.state + duration(ej))

}

/I Processing the edge ej=<(vj, tj), (vi, ti)> to propagate

the state of (vj, tj) to that of (vi, ti)

__device__ T Propagate(Vertex (vj, tj), Vertex (vi, ti)){
return min(vj.state, vi.state + dist(ej))

(a) Reachability (b) Earliest-arrival path

(c) Shortest Path (d) Fastest Path

Figure 7. Examples to illustrate the implementation of temporal path problems on TempGraph

problems. VInitial() is used to initialize the states of all ver-
tices according to certain applications. GenerateShortcut()
is employed to generate the weight of the shortcut for each
time-dependent chain. For the processing of each shortcut
or each edge on a chain, Propagate() is used to propagate
its source vertex’s state to update its destination vertex’s
state. To illustrate the usage of APIs, we use the shortest
path as an example. The VInitial function will set the val-
ues for the root vertex to 0 and the others to +co. For each
time-dependent chain, the GenerateShortcut function is
implemented to accumulate the weights of each edge on this
chain and use this result as the corresponding shortcut’s
weight. For the Propagate function, we sum the weight of
each edge (or shortcut) with the distance of its source vertex
to yield a new distance, and then choose the smaller distance
between the calculated distance and the destination vertex’s
distance as its new distance. Our programming APIs only
require users to furnish a few lines of code for implementing
temporal graph problems as illustrated in Figure 7.

4 Implementation of TempGraph
4.1 Chain-based Temporal Graph Transformation
To provide an opportunity to fully utilize the massive par-
allelism and high internal bandwidth of GPU, we propose a
chain-based temporal graph transformation method. It ex-
pands the vertices of the temporal graph to obtain a DAG,
liking existing solutions [10, 18, 19], and then partitions this
DAG into a set of disjoint time-dependent chains, which
can elegantly expose the temporal information with higher
data parallelism. The following will mainly describe how to
efficiently partition the DAG into time-dependent chains.
Chain-based Temporal Graph Partitioning. We define
a vertex (v, t) € V that meets one of the following conditions
as a hub-vertex: 1) Degreey, (v, t) = 0; 2) Degreei, (v, t) > 2; 3)
Degreeqow(v, t) > 2, where Degree, (v, t) and Degreeqy (v, t)
indicate the in-degree and out-degree of (v,), respectively.
All hub-vertices form a hub-vertex set H. Each of these ver-
tices is usually the head vertex of the time-dependent chains
and thus can be used to generate the corresponding chains.
We use a parallel approach to generate time-dependent
chains. Specifically, it first divides the set of hub-vertices into
several chunks and then assigns them to CPU threads. As
illustrated in Algorithm 1, each CPU thread repeatedly takes
the hub-vertex as the root and then traverses the transformed
DAG in a depth-first order until all assigned hub-vertices

Algorithm 1 Chain-based Transformation on CPU

1: function TRANSFORMATION((Uro0t, troot)s Ch)

2 for each outgoing neighbor (v, #;) of (Vroot, troot) dO
3 INSERT((Uroots troot)s Chl)

4 CHAINPARTITIONING((vy, t;), Chy)

5: end for

6 Set the vertex (vroot, troot) @s finished

7: end function

8: function CHAINPARTITIONING((v;, t;), Chy)

9 INSerT((v, t;), Chy)

10: if (v;, t;) ¢ H then

11 if (v, t;) has outgoing neighbor (v, t) then
12: CHAINPARTITIONING((v, t), Ch;)

13: else

14: NEwCHAIN(Ch;)

15: end if

16: else

17: NEwCHAIN(Ch;)

18: end if

19: end function

have been handled. Note that a hub-vertex (e.g., the vertex (B,
3)) may be the head vertex of multiple time-dependent chains
(e.g., (B, 3)—(A, 4)—(K, 6) and (B, 3)—(C, 5)—(B, 6)—(D,
7)). For each outgoing direct neighbor (e.g., (v}, t;)) of the
root, a time-dependent chain (i.e., Ch;) will be generated by
using the CHAINPARTITIONING function (lines 2-5). When all
chains originating from this root have been generated, this
root will be set as finished (line 6). For the generation of each
chain, it first inserts the traversed vertex (e.g., (v;, t;)) into a
vertex queue of the chain (i.e., Ch;) and then detects whether
this vertex does not belong to the hub-vertices H (lines 9-10).
If it does not belong to H, the outgoing direct neighbor of (v;,
t;) will be further traversed to generate the chain (lines 11-13).
The vertices recursively explored by each CPU thread are
inserted into the same vertex queue successively to construct
chains (lines 3 and 9). When a new chain is generated (lines
14 and 17), it is only necessary to record the offset of the
vertex queue to maintain the head vertex of this chain. In
this way, the temporal graph can be transformed into a series
of disjoint time-dependent chains. Within each chain, the
vertices are stored following their inherent temporal order,
which facilitates fast vertex state propagation along the chain
and enhances the locality of vertex computing.

236

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

ChyCh,Ch,Ch;Ch,

ChTable[o]|3(7 [w0]13].-[@

b~
Vie [A[H]B[B]c[e[ofefa[k[e[r[p]i]s]K] o]

T, [tf2]s[s]s[ef7]a[4]e[s]6]7]a]s]6] o]

Vval [Au]Hz]Ba[B:] Cs[Bs] Dr[Bs[A Ks[B3 [Fs [Di] 1] s [Ko - [2]

W, ool
Figure 8. Representation of the transformed Graph

Storage of Transformed Graph. We employ five arrays
to efficiently store the transformed graph on GPU. V4, is
established to maintain the indexes of the vertices in each
chain following their temporal order sequentially. Thus, two
successive items in Vigx can represent a temporal edge, where
the weight of each temporal edge is stored in W,. The time
information and value of each vertex are stored in T, and V,,;,
respectively. ChTable is also employed to index the chains
and maintain the indexes of their head vertices. The range
of a chain can be represented by two successive items of
ChTable. The chains originating from the same vertex will be
arranged in consecutive items within the above arrays. This
is because these chains are typically activated simultane-
ously for parallel computing. By such means, we can assign
these chains to be concurrently handled by the threads of a
warp, enabling these threads to perform coalesced accesses
to them (detailed in §4.4). Figure 8 shows the storage of the
transformed graph corresponding to the graph in Figure 5(a).

4.2 Skeleton-graph Generation

Although the generated time-dependent chains can achieve
fast vertex state propagation along the temporal order impli-
cated in them, the parallel execution of these chains remains
challenging due to the intrinsic temporal dependency among
them. For example, in Figure 5(a), the computing of the chain
Ch;y: (B, 3)—(C, 5)—(B, 6)—(D, 7) depends on that of Chy:
(A, 1)—>(H, 2)—(B, 3). That is, Chy can be handled only if
Chy has been handled and propagated its vertex state to Ch;.
Such poor parallelism makes it struggle to fully utilize the
computing power and memory bandwidth of GPU.

To overcome these limitations, we generate the shortcut
for each time-dependent chain, which enables us to decou-
ple the temporal dependency between the chains (detailed
in §4.3). As depicted in Algorithm 2, in order to generate
the shortcuts in parallel, it assigns each chain, e.g., Chy, to
be handled by a single GPU thread (line 2). After that, it
detects whether Ch; contains more than two vertices (line
3), which can be obtained according to the information in
ChTable. If so, it repeatedly uses the user-specified func-
tion GenerateShortcut to calculate the weight of the cor-
responding shortcut S; by accumulating the weight of each
edge on this chain based on the corresponding application
(lines 4-6). Otherwise, the corresponding temporal edge is
directly treated as a shortcut to further reduce the extra
overhead (line 8). After all the shortcuts are generated, these
shortcuts are used to construct the skeleton-graph, which

237

Jin Zhao et al.

Algorithm 2 Shortcut Generation on GPU

function GENERATION(Ch, S)
for each Ch; € Ch in parallel do
if Ch; contains more than two vertices then
for each temporal edge e € Ch; do
S;<—GenerateShortcut(S;, e)
end for
else /*Ch; only has an edge e, i.e., two vertices®/
Sl(—m
end if
10: end for
11: end function

1:
2
3
4
5:
6
7
8
9

can bring two advantages. First, it enables the vertex state to
reach the corresponding indirect neighbors quickly, achiev-
ing faster convergence speed for temporal path problems.
Second, it enables the chains to be concurrently computed
by massive GPU threads through decoupling their temporal
dependencies, maximizing the degree of parallelism. Note
that when storing the skeleton-graph, the storage order of
shortcuts and time-dependent chains is the same. It means
that both of them can quickly retrieve each other.

4.3 Shortcut-guided Parallel Computing

To efficiently handle the time-dependent chains of the tem-
poral graph, we introduce a novel shortcut-guided hybrid
parallel execution method. It embraces two separate graph
computing engines (i.e., the skeleton-graph computing en-
gine and the chain computing engine), to decouple the tem-
poral dependency among the chains and handle multiple
chains in parallel. However, the implementation of shortcut-
guided parallel computing remains the following challenges.
First, the vertex states associated with different chains may
be irregularly passed through their common neighbor chains,
causing redundant data access and computation cost. Second,
the skewed lengths of the generated chains may cause the
low parallelism of GPU threads. Third, the skeleton-graph
struggles to be handled by GPU in parallel, because its short-
cuts must be handled along their temporal order. We present
how to address these challenges in the following text.
Topology-aware Skeleton-graph Computing. To avoid
the redundant computation of chains, the hub vertices of the
skeleton graph G; are assigned to be handled layer by layer
along their topological order in G, (as shown in Figure 5(c)),
thereby regularly activating the chains for processing. As
depicted in Algorithm 3, it first obtains the corresponding
active hub-vertex according to the root vertex v,40; of the
temporal graph application. In detail, it detects whether v,4,;
is hub-vertex. If yes, this hub-vertex is set as active. Other-
wise, it retrieves the chain (e.g., Chy) containing v,,0; (in-
troduced later) and then handles the vertices of Ch, along
their temporal order. Then, the state of the tail vertex of
Ch, will be activated. If this tail vertex is hub-vertex, the

TempGraph: An Efficient Chain-driven Temporal Graph Computing Framework on the GPU ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Algorithm 3 Shortcut-guided Hybrid Parallel Execution

1: procedure SKELETONENGINE(G;, Ch, Chain_Queue)
2 GETACTIVEHUBVERTEX(Ch)
3 for each layer of hub-vertices H; do
4 for each active vertex (v;, t;) € H; in parallel do
5: for each shortcut S;: (v;, t;)— (v, t;) in G, do
6 (v, t;).state «Propagate(S;)
7 Chain_Queue.PusH(Ch;.neighborchains)
8 Set (v}, t;) as active
9 end for
Set (v;, t;) as inactive

end for
end for
: end procedure
: procedure CHAINENGINE(Ch, Chain_Queue)

15: REMOVECHAIN(Ch, Chain_Queue)

16: SorTCHAIN(Chain_Queue)

17: GrourCHAIN(Chain_Queue)

18: for each group gr of chains in parallel do
19: for each chain Ch; in gr do

20: CHAINCOMPUTING(Ch;)

21 end for

22 end for

23: end procedure

'\5\100

S U HH] RoadNet-CA] OpenFlights FlightList
g Reddit MAG Twitter WebUK 4
£]
<

[&]

“6 4
S H

E i |
(] ﬁ E |7Dk A o .

= [1 20 [34 [56 [7.8 [910] [I1,+w)

The chain Iengths
Figure 9. The distribution of chain lengths for different real-

world temporal graphs in Table 2

corresponding hub-vertex is set as active. After that, each
layer of the hub-vertices is handled in parallel (lines 3-12).
For each active hub-vertex (v;, t;) in Gg, each of its outgoing
edges (e.g., (v;, t;)—(vj, t;)) is a shortcut S;. The processing of
S; can quickly influence the state of another hub-vertex (i.e.,
(v}, tj)) and activate more chains (i.e., the neighbor chains
of Chy) (lines 5-9), where the activated chains are stored in
Chain_Queue (line 7). Note that we establish a hash table
on GPU [13] to quickly retrieve the corresponding chain for
each vertex (except hub-vertices), where each entry in this
hash table is the form of <(v;, t;), Ch;>.

Chain-driven Parallel Computing. After the skeleton-
graph computing, massive chains will be activated and their
IDs are stored in Chain_Queue. Then, these chains are as-
signed to be concurrently handled by the GPU threads as
shown in Algorithm 3. Note that the chains that only contain
two vertices do not need to be handled anymore, because
their corresponding edges have been handled during the

238

I
Skeleton-graph| Partition #i [Partition #i+1|Partition #+2 .
computing shortcuts shortcuts shortcuts '
————————— —:————————+————————|————————4————————:-—
Chain ! Partition #i [Partition #i+1|Partition #i+2|
computing : chains chains chains

Time
Figure 10. The overlap between skeleton-graph computing

and chain computing Ch,Ch,Chs

ChTable|---[3] 7 [10] - |]

Vig [-[B[B[B[C[A[F[B[K][D] O]
T, [-[3]3]3]s|4]e]6]|6]7] ||
Viar |--|Ba|Bs|Bs[Cs|Au] Fs|Bs|Ks|D: |- | @]

e [[afe]afafa]2]2]o]o]-[2]

Figure 11. Illustration of the layout optimization
skeleton-graph computing. Therefore, these chains will be
removed from Chain_Queue (line 15). For efficient parallel
processing, the remaining chains in Chain_Queue will be
sorted according to their IDs, ensuring better data locality
(line 16). Nevertheless, as illustrated in Figure 9, the gen-
erated chains typically exhibit imbalances in their lengths.
Due to the lock-step execution semantics of GPU, assign-
ing chains with different lengths to be processed by GPU
threads on the same SMX can result in the underutilization of
this SMX. Therefore, the chains in Chain_Queue are evenly
grouped to try to ensure that different threads on the same
SMX handle almost the same number of edges in their as-
signed chains (line 17). Next, the grouped chains are assigned
to be computed by GPU in parallel (lines 18-22).

Overlap between Skeleton-graph Computing and
Chain Computing. Although chain computing can be effi-
ciently conducted in parallel, skeleton-graph computing may
be the bottleneck due to the lower degree of data parallelism.
Fortunately, the interleaving between skeleton-graph com-
puting and chain computing for each partition of shortcuts
provides the potential opportunity to hide this bottleneck.
Thus, we sequentially divide the shortcuts of the skeleton-
graph into a series of partitions according to their topological
order, where the shortcuts of the hub vertices in the same
layer (as illustrated in Figure 5 (c)) try to be assigned into the
same partition. As shown in Figure 10, when the shortcuts
of the i* partition have been handled by the skeleton-graph
computing engine, the chain computing engine will be driven
to handle the chains corresponding to the shortcuts of the

th partition. In the meantime, the skeleton-graph computing
engine starts handling the shortcuts of the (i + 1)** partition.
By such means, the overheads of the skeleton-graph comput-
ing can be usually hidden for better performance. Note that
these partitions need to be assigned and processed along the
topological order among them.

4.4 Layout Optimization for GPU Architectures

Data locality is a pivotal factor influencing the efficiency of
GPU applications. During the execution, TempGraph assigns
each time-dependent chain to be handled by a thread, where

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

the vertices of this chain are consecutively maintained in
Viax by default as depicted in Figure 8. Therefore, from the
perspective of an individual thread, the data accesses to Vj4y
exhibit good data locality. Nevertheless, GPU threads are
organized into warps consisting of 32 threads and operate
in a Single Instruction, Multiple Data (SIMD) fashion. From
the warp’s perspective, access to Vigy is actually strided,
which hurts the data locality. To overcome this challenge,
we optimize the layout of the transformed temporal graph
by sorting the items of the chains originating from the same
vertex in a strided manner as shown in Figure 11, because
these chains are usually activated simultaneously for parallel
computing. By such means, when the chains originating from
the same vertex are assigned to be handled by the same warp
(as they are consecutive in Vjgy, Ty, Vyqr, and w,), each time
they access an item, a consecutive segment will be retrieved
from global memory, ensuring efficient coalesced accesses.

4.5 Supporting of Out-of-GPU-Memory Processing
To handle large-scale temporal graphs (i.e., those exceeding
GPU memory capacity), TempGraph streams the partitions
(as introduced in §4.3) from CPU memory to GPU memory
for processing. In detail, due to the sequential nature of state
propagation along temporal dependencies, the partitions
are tried to be dispatched to GPU for parallel processing
according to their topological order. Thus, each partition is
assigned a layer number, determined by the minimum layer
number of its hub vertices. When SMXs become idle, the ac-
tive partitions with the smallest layer number are prioritized
for dispatch from the host to the idle SMXs for processing.
To further enhance parallelism, the processing order of the
partitions at the same layer is arranged in descending order
according to the total number of chains in their successive
partitions. By such means, more successive chains are able
to be activated and handled when SMXs become idle.

To overlap CPU-GPU data transfer and kernel execution,
the partitions are streamed asynchronously to GPU when
some previously transferred partitions are being handled on
GPU. In detail, TempGraph creates multiple streams for the
transfer of partitions, and the number of streams is expected
to be N=(Mg — S,)/Sp, where Mg is the GPU global memory
size, Sp is the size of each partition, and S, is the size of the re-
served space. Then, the data transfer and kernel computation
of different streams will be automatically overlapped.

5 Evaluation

5.1 Experimental Setup

System Configuration. The hardware platform used in our
experiments is a server equipped with two 64-core Intel Xeon
Platinum 8592V CPUs, 256 GB memory, and an NVIDIA
A100 GPU with 128 SMXs (6912 cores) and 80 GB global
memory. The server runs Ubuntu 18.04 with Linux kernel
version 5.10.0 and CUDA 11.8 installed. All GPU programs
are compiled with nvcc using the highest optimization level.

239

Jin Zhao et al.

Table 2. Data sets properties (Ly and Lg are the average
lifespans of vertices and edges, respectively)

Graph \4 |E| Ly Lg
RoadNet-TX (TX) [32] 14M 20M 197 112
RoadNet-CA (CA) [32] 20M 28 M 207 124
OpenFlights (OF) [24] 67K 42M 306 241

FlightList (FL) [58] 160 K 41M 562 5.6
Reddit (RE) [17] 93M 5282M 7.0 1.3
MAG [17] 674 M 11B 178 129
Twitter (TW) [5] 52.5 M 1.9B 275 8.1
WebUK (WU) [3] 1336M 55B 163 125
LDBC-8_9 (L89) [22] 106 M 8487M 2435 75
LDBC-9_0 (L90) [22] 129M 1.0B 69.8 447

Benchmarks and Datasets. Four representative tem-
poral path problems (i.e., reachability, earliest-arrival path,
shortest path, and fastest path, as listed in §2.1) are used as
benchmarks. As shown in Table 2, eight real-world graphs
and two synthesized graphs are used in our experiments.
Note that Reddit, MAG, and WebUK are real-world temporal
graphs, while Twitter is a social network with synthesized
temporal information [1, 10]. RoadNet-TX and RoadNet-CA
are real-world transportation temporal graphs, and Open-
Flights and FlightList are real-world flight temporal graphs.
LDBC-8_9 and LDBC-9_0 are two synthetic temporal graphs
and are generated by using the Linked Data Benchmark Coun-
cil (LDBC) [23, 67].

Baselines. To evaluate the performance of TempGraph,
we first incorporate the state-of-the-art temporal graph com-
puting techniques [18, 19, 56] into the cutting-edge GPU-
based static graph processing engines, i.e., Tigr (version
1.0) [53] and Gunrock (version 2.1.0%) [66], respectively. Then,
the optimized versions of Tigr [53] and Gunrock [66] are
called Tigr-T and Gunrock-T, respectively, which can han-
dle temporal path problems using the transformation-based
execution model. The experiments show that Tigr-T and
Gunrock-T outperform Tigr and Gunrock by up to 4.17x and
4.53x, respectively, when handling temporal path problems.
Besides, we also use the state-of-the-art CPU-based tempo-
ral graph computing engine TeGraph [18, 19] as the CPU
baseline. Note that we run the experiments for 100 times
with randomly selected vertex as input. The reported results
are the average result of the 100 independent runs.

5.2 Overall Performance

Like existing solutions [18, 19, 69, 70], the execution time of
TempGraph consists of offline temporal graph transforma-
tion time and online temporal graph computation time. In
detail, the transformation involves converting the original
temporal graph into its equivalent DAG and then partition-
ing this DAG into a series of disjoint time-dependent chains.
The computation includes generating shortcuts for these
time-dependent chains and then handling both the shortcuts

’Gunrock version 2.1.0 was newly released 2024

(https://github.com/gunrock/gunrock/releases/tag/v2.1.0).

in July

TempGraph: An Efficient Chain-driven Temporal Graph Computing Framework on the GPU ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 3. Transformation time in seconds

Table 4. Temporal graph computation time in milliseconds

X CA OF FL RE TeGraph Tigr-T Gunrock-T [TempGraph
TeGraph 0.044 0.062 0.022 0.135 0.343 X 4.9 (49.1x) 0.5 (5.0x) 0.4 (4.1x) 0.1
Tigr-T 0051 0.071 0023 0.144 0392 CA| 105(35%) | 1.1(5.5x) | 0.9 (4.5x) 0.2
Gunrock-T 0.048 0.069 0.024 0.151 0.366 OF 4.2 (42.0%) 0.5 (5.0x) 0.3 (3.0) 0.1
TempGraph 0.053 0.074 0.027 0.169 0.412 B FL | 211 (70.3x) 2.2 (7.3x) 1.4 (4.7%) 0.3
MAG W WU L89 L90 ;: RE | 955 (119.4%) | 4.7 (5.9x) | 3.7 (4.6X) 0.8
TeGraph 2263 2207 6407 0562 0.744 S MAG|1157.9 (148.5x)| 55.2 (7.1x) | 40.4 (5.2X) 7.8
Tigr-T 2572 2382 7.014 0608 0.878 S[TW [1361.5 (172.3x)| 64.1 (8.1x) | 485 (6.1x) 7.9
Gunrock-T 2433 2314 6862 0.594 0841 WU [20667.4 (206.3x)| 932.2 (9.3%) | 654.6 (6.5X) | 100.2
TempGraph 2648 2461 7376 0.632 0.909 189 | 1428 (1298%) | 69 (63x) | 53 (4.8%) 11
L90 | 209.2 (130.1x) | 10.5 (6.6X) | 7.4 (4.6X) 16
and chains in parallel for certain applications. Note that the TX | 26.2 (65.5%) 3.5 (8.8X%) 2.7 (6.8%) 0.4
offline transformation must be re-performed for each new o CA| 508(63.5%) | 7.1(8.9x) | 4.6(5.8%) 0.8
temporal graph, while the transformed result can be reused S| OF | 287(573x) | 41(82X) | 3.2(6.4%) 0.5
for multiple applications running over the same graph. The E FL | 97.4(64.9x) | 13.2(8.8X) | 8.9(5.9%) 1.5
online computation needs to be performed for each new B RE | 7215 (175.9) | 34.1(3.3X) | 24.9 (6.1X) 41
application. We next report temporal graph transformation i MAG) 5971.4 (242.7x) | 268.5 (10.9%) | 1913 (7.8x) 24.6
, oo 2 TW |6217.8 (244.8%) | 284.2 (11.2X) | 196.1 (7.7x) | 25.4
time, temporal graph computation time, and end-to-end exe- "= WU [82750.2 (328.0x)3672.9 (14.6x) 2404.1 (95x) | 252.3
C}ltlon time (i.e., th? total tlme required for both trans.forma- (S[1.89 | 7185 (199.6x) | 329 (9.1x) | 233 (6.5%) 36
tion and computation) of different solutions, respectively. L90 | 1149.6 (205.3x) | 52.3 (9.3%) | 36.8 (6.6X) 5.6
Temporal Graph Transformation. Table 3 shows the TX | 34.6 (70.4x) 4.2 (8.4X) 3.8 (7.8X) 0.5
transformation cost of different solutions. We can find that CA | 56.4(64.1x) 6.5 (7.4X) 6.2 (6.9%) 0.9
TempGraph needs slightly more extra transformation time, OF | 383(58.2x) | 54(83%X) | 6.7(7.1%) 0.7
accounting for 11.8%-25.2%, 3.1%-17.4%, and 5.3%-12.5% of | FL | 1019 (622x) | 149 (9.1x) | 12.1(7.4X) L6
the transformation time of TeGraph, Tigr-T, and Gunrock-T, E; RE | 740.2 (189.8%) | 34.3(8.8%) | 26.1(6.7x) 3.9
respectively. This is because, in addition to transforming the & MAG| 6132.1 (249.3x) | 278.1 (11.3X) | 2033 (8.3%) 24.6
original temporal graph into its equivalent DAG, TempGraph = TW [6295.9 (296.9x) | 282.2 (13.3) | 210.2 (9.9%) 212
: _ , -t ’ % WU [86926.4 (368.9x)[3817.6 (16.2X)[2586.3 (10.9x)] 235.6
requires a little extra time to divide the transformed DAG T80 | 844.1 (234.5x) | 38.3 (10.9%) | 28.6 (7.9X) 36
into a series of disjoint time-dependent chains by traversing 190 [1322.9 (249.6x)| 59.7 (11.3x) | 43.5 (8.2%) 53
this DAG in parallel for exactly once (detailed in §4.1). Be- TX | 237 (33.9%) | 54 (77x) | 4.6 (6.6x) 0.7
sides, the memory footprint required by TempGraph are 0.5 CA | 445 (40.4X) 8.2 (7.5%) 6.9 (6.3x) 1.1
GB, 0.7 GB, 0.4 GB, 0.9 GB, 4.7 GB, 12.6 GB, 28.4 GB, 49.1 GB, OF | 352 (44.1x) | 69 (86x) | 58(7.3%) 0.8
14.3 GB, and 11.9 GB for TX, CA, OF, FL, RE, MAG, TW, WU, g FL | 949(527x) | 14.1(7.8%) | 124(6.9%) 18
L89, and L90, respectively. The extra storage cost (e.g., main- | RE | 718.8 (167.2X) | 34.1(7.9X) | 28.4(6.6X) 4.3
taining the skeleton-graph and hash table) of TempGraph LEMAG 5959.5 (258.0x) | 276.8 (12.0x) | 229.1 (9.9x) | 23.1
accounts for 13.8%-27.4% of the size of the original temporal S| TW | 6045.3 (256.2x) | 274.4 (11.6x) | 239.1 (10.1) 23.6
e WU [84582.7 (350.5%)[3792.9 (15.7X)[2820.3 (11.7X)| 241.3
graphs. Although Te'mpGraph. r.1ee(.fls such additional cost, 189 | 797.2 (194.4%) | 37.2 (0.1%) | 27.7 (6.5%) i1
it offers an opportunity for facilitating the fast vertex state T90 [1246.8 (201.1x)| 58.1 (9.4%) | 39.0 (63%) 6.2

propagation along these chains and enabling many chains
to be concurrently handled by massive threads of GPU.
Temporal Graph Computation. Table 4 shows the com-
putation time of Tigr-T, Gunrock-T, and TempGraph on an
NVIDIA GPU, and TeGraph on an Intel CPU. It can be seen
that TempGraph outperforms TeGraph, Tigr-T, and Gunrock-
T by 33.9-368.9%, 5.9-16.2X, and 3.0-11.7X, respectively. The
performance improvement of TempGraph mainly comes
from the following reasons. First, it enables the vertex states
to be propagated more quickly along the time-dependent
chains, which elegantly exposes the temporal order of the
edge in the temporal graph. Second, it generates the short-
cuts to decouple the temporal dependency among different
chains, enabling each vertex to quickly propagate its state
to its indirect neighbors for faster convergence with fewer
iterations. Third, through utilizing the generated shortcuts,

240

massive chains can be activated for computing in a short
time, ensuring a higher degree of data parallelism. Note that
the CPU-based implementation of our approach only gains
1.5-3.2X speedups than TeGraph [18, 19], which is much
lower than the GPU-based implementation.

Figure 12 shows the ratio of the number of active ver-
tices to that of all vertices when running the shortest path.
From this figure, we have the following two findings. First,
TempGraph requires fewer iterations to converge in com-
parison with the other solutions. For example, over WebUK,
TempGraph converges in only 11 iterations, while Tigr-T and
Gunrock-T require more than 30 iterations. Second, the ratio
of TempGraph is higher than that of Tigr-T and Gunrock-T,
which means that TempGraph can better utilize the massive
parallelism and high bandwidth of GPU. Figure 13 shows

Jin Zhao et al.

\+Tigr-T —=— Gunrock-T —=— TempGraph

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

m -_\\\\\v_\\\k o sy yderndws | | ey Yderndwe | |
o [S 1009 [
M - wzZZ222277777Z27 6 nw Avo 1-1611 e
88 o 400 S s
- g e RS e S Lspowns |
o8 Y8 | 1-1611 3
= %% o S ydeiso L
[T} ., 2, 2 I K ydesodwa] | 5
— . = %, 3 1-j01un
T EEEREN % & 5 Lo |3
— ; g ydesoo |
o v\Q S ...m. s ydesodwe 1| F
= o A9 =
g S5 287 8 Sl
k=3 Qs ez by a. ~q 1-1611 of
= V& SN juseiool BF
= = +\vo = S yderodwe 1] . O F
o R, R | pouns |2 5
= 8888 R ° \N\\ob% Q, | 1-1611 s >t
0 - % = S ydesos L EE
RS g T udeioduey) R
AN o o /.vaeczo_mm_w‘
o ez O mL S ﬂam h_m.h.w " ="
10} N m L N I3} Sydesodweyr Wi
< Qe & o, = | |powns |, f
s wE 3 N S TECTR I
a8 5 s S {ydesoe |
o2 R 6«\\\\\ <3 L S ydesodue ||
5 O 3 N 1-pooung |LL
n 9 4 Ov.&m\ ? = ~ o
r 1-4611
o B o he” ¥ g 4 £ G || B S udesoeL
8K¥RVSwYe, £ % S o |Elt S ydeiodive |
— 8 m I} .m.a\va\ S BlElr S 1-4o0iuns mﬂv
= 0 & %, —~%= |8 {11611
= N _TO |E 2L O R Sy ydeios |
=] o s o QQ.AY ~ =] 4
= ISR 2% o Ells N ydesodwe | |
m R % “ O,\ON@Q QS glt = 1-po1uns |
= SEE/ 8 58 S,
- = %, & —_— =
v °© %% OlEE © 6 % & o
H > o %%, @ A 2833832 i
owowaowo S ¢ % | [own uonnsexe pazifewioN 3L} UONINOSXS POZIRWION
OANN A Ze
L O = | S]
- T _..n‘.v.v nnm m = m ISy ydesodws | | e ydesodus |
— :
k7] « - Q= | Iy | -4oound S 1-yo01ung
T o ncm i P E= I S NN T RGIT m 1-1611 m
= N .m] o 2| NNNNNNANNNae T TS N ydeioe |
S H < o] m + A yderodwe | | N ydesodwe |
= o8 Q|- o |5l NN R T o S 15poiund |9
2] =5 =gl F NSNS | -161) a SN 11611 v}
o 3 2 < 5|+ NNNNNNNNNR (T2 15T] : S ydeise)
¥ a,) = N ydesoduis | | + K ydesodws |
m % m :1_u w o m m + NN\ _.,VWE::O W F B 1 -3001un9 W
o) NI = | -1611 K 1-1611
— ® Ay =N S ydesoa | i ydesos |
r m E 2 m —t SN ydesodwe | | S ydesodwe |
L o o= FXSSSSSSSINY | -00.UnS SN | -001ung
.= 2m1 = NN TR TE = S 1-1611 W
=== = . S ~JU% N et
HE us @ = FRSSSSSN el | b A ydelos |
& o8 = S ydesodwe | | o® + Sy ydesodwely, . =
m. =20 W ESSSSSSSSSSSS | spoauns [g 2 SIS | -5001ung) m %
i [T B [N T = Y | -1611
N (@) FARSSSSSSSS ydele | M.m SN ydeios | = .NM
oMNOWWOoWo S ydesodwe | S S ydelsodwo | Ed
MAN A A o ()
S D o0 EEIIINNNNN | -4001un) E% S | -poouung |y 8
< o < ANNNNNNRRNs TS TTR i Sy | -a61) o Nm
O A Mu. H RSSSSSSSISINSSS Yo | B < yde1oa |
o m S s F oSS ydesodwia || + s ydeiodwe |
7] =] %3 < [ESSSSSSISSISSSS | -yooiung | S [-jpouung |,
.W 1% O 2 ol S S\ TR GT o | 1-1611 o
o - S ydeu 255 = ydeu
< = o2 o RSSSSSSSSSSSSSSS ydeoe | ydeios |
o - = = F AR ydesodwe | | + N ydesodwe |
1] 0 a2 g PRSI | -%000un | K S 1-pound |
O_..,un,v_._,un.,u_..,.un,vl s m S NN TG o N 11611 (@]
5] S 5555 NN T TS N ydesoa |
MANNH A w % o0 FoESSSSSS Ydesodwia || + S ydeiodwe |
w1 b = rﬂ_. | EESSINININSNN | poaund) |« b SIS | -yoouun9 |«
m N = I sy 1 -161 1 (ST ~ 11611 o
T o5 %~ RSN Yydesos | - | ydesos |
@ M = 7 FESSSSS ydesodws | | + S ydesodwe |
Z a8 A By OSSN | jooiung) [x b H SN | -yp0iun |x¢
.nw o8 O S SN TG = + 1-1611 ~
m — = ,\“&a\ F RS ydeloo | = N ydeina |
0
=l % Q ¥ O ¥ ANQO S ® © ¥ N QO
n,u_.a,vn,u_.q,un,u_._,,X,ul 0 @0@ +4 oo oo oo < O O © © o
QUIWS (9%) ones uoneziinn NdO SLUI) UONNDSXS PazIfeWIoN alU1) UONNJBX® POZIWION

[18, 19, 69,

70]. The following results only report the computation time.
generated by LDBC [23,

where their properties are de-

(

we can find that the higher

performance improvement is obtained by TempGraph when

the size of the graph increases. This is because when han-

>

with different graph sizes
To further evaluate the scalability of TempGraph, we lim-

ited the number of available SMXs during execution over

time-dependent chains of the temporal graph to be handled
WebUK. As shown in Figure 16, we observe that Tigr-T and

by GPU threads concurrently, ensuring higher parallelism.
This means that TempGraph is more effective for large-scale

dling the larger temporal graphs, TempGraph enables more
temporal graph computing, ensuring good scalability.

Figure 15 evaluates the performance of various solutions over

and the computation time are reported separately

5.3 Scalability of TempGraph
the five synthetic temporal graphs

67])
tailed in Table 5. From Figure 15,

241

12.5 GB
14.9 GB
19.2 GB
44.7 GB
58.2 GB

Graph Size
-20.2%) under all

circumstances due to the higher data parallelism and faster

convergence speed of TempGraph.

14.7%

|E|
848.7 M
0B
B

end execution time of various solutions for different temporal path problems
1.3

Table 5. The LDBC datasets properties
1.3B

1.0B
1

74.6%) obtains higher ratios than

Figure 14. End-to
4
10.6 M
129 M
16.1M
4349 M
5553 M

LDBC-9_0

LDBC-9 1
9 2
93

Graph
LDBC-8_9
LDBC-
(13.5%-18.6%) and Gunrock-T (

LDBC
End-to-End Performance. Figure 14 shows that Temp-

Graph achieves higher end-to-end performance than other

these graphs can be concurrently handled by GPU, bringing

significant speedups to effectively mitigate the extra trans-
formation cost. In general, the one-time transformation time

solutions when handling large-scale temporal graphs (e.g.,
WebUK). This is because extensive time-dependent chains of

that TempGraph (68.4%-

Tigr-T

TempGraph: An Efficient Chain-driven Temporal Graph Computing Framework on the GPU ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

[}

£

= 25
S 20|
3 15
X 10
3 9
SES
©

£
ERN

(a) reachability

TempGraph |

(b) earliest-arrival path
Figure 15. Performance of various solutions normalized to that of Tigr-T over LDBC-8_9

(c) shortest path

Q

‘b(f%/ Q)c;q/ <bo’(b g
NUEEENUSEING

(d) fastest path

\ Tigr-T +—Gunrock-T +TempGraph\
64 ‘ ‘ T 64 ‘ ‘ N 64 7
o 484 e R 1
ke e
o 321 I 32
16+ —* 16
N e e ‘ e
0 32 64 9% 128 2 9% 128 0 2 64 9% 128 0 32 64 9% 128
(a) reachability (b) earliest-arrival path (c) shortest path (d) fastest path
Figure 16. Performance of different solutions running with different numbers of SMXs (ranging from 1 to 128)
[Tigr-T E2B Gunrock-T SN TempGraph =~ w1 9 T——T——+—"—7—+————1——— . er— Datatrans
d10 B2 riammiod Tevonn] || (g, om T m oeh T s o] g [0k
= 5 Wi 7o v WA U] e+ ! ! ! = Overlapping phases|
508/ gos] < 08/ 510
S 06l 80.6 = S0
3 0.6 8 0.4 3 0.6 8
8 0.4 3 5 0.4] 5 0.
B NO0.21 18 To
3 %2 oo CIRCI SIS Bl T
= > e W\ . .
£ ool & sl 5 el lad e e Wit E oo , Sool
g VIO Al00 H100 =2Pe® o © SRRy 2 L10k 27" L4 L3k Liok

Figure 17. The performance
of shortest path over WebUK

Gunrock-T experience slow performance improvement as
the number of available SMXs increases. This is because that
the vertices of the temporal graphs need to be processed
along the temporal order sequentially. Therefore, in existing
solutions, the vertex states are slowly propagated along the
inherent time-dependent chains and only a very small per-
centage of vertices are active during execution, resulting in
a large number of SMXs sitting idle. In contrast, TempGraph
can efficiently decouple the temporal dependency among
the chains and use the shortcuts to quickly drive massive
chains for parallel computing, which boosts a higher degree
of data parallelism (which means fewer SMXs sitting idle).
As depicted in Figure 16, when the number of available SMXs
increases, TempGraph achieves considerable performance
improvement until the number of available SMXs equals 96,
while this number is around 8 for both Tigr-T and Gunrock-T.
Besides, Figure 17 further depicts that TempGraph consis-
tently outperforms other solutions across various GPU types
and can achieve greater speedups on more advanced GPUs.

5.4 Performance of Layout Optimization

Figure 18 evaluates the impacts of our layout optimization
(detailed in §4.4) on the performance of TempGraph, where
TempGraph-without is the version of TempGraph that dis-
enables our layout optimization. The results indicate that
our proposed layout optimization yields performance im-
provements for TempGraph-without, achieving 1.08-1.26x

242

Figure 18. Execution time with/without Figure 19. The performance of Figure 20. Time
our GPU-friendly layout optimization

shortest path breakdown

Table 6. The large-scale temporal graphs properties

Graph 4 |E| Graph Size
LDBC-9_4 (L94) 293M 26B 92.8 GB
LDBC-sf3k (L3k) 335M 29B 114.5 GB

LDBC-sflok (L10k) ~ 1002M 94B 286.2GB

2 | 721 Trensformation time A Computation time|

N s e e

‘go.e- 7

350.4- 1

8021

gy g g g g g

g SEETEEELEELEBLEBLELBLLE 55T

T FEC8QFSQFSQFrSQreQr8@rsQreg

w c =4 c c c c c c
3% 33 38 3% 38 33 38 3%
™ cafbi orFt AT reTimad o twh i wol

Figure 21. Performance on dynamic temporal graphs

speedups. This is because the enhanced memory locality
of our optimization can ensure efficient coalesced accesses,
fully exploring the high memory bandwidth of GPU.

5.5 Performance of Out-of-GPU-Memory Processing
Figure 19 shows the performance of TempGraph compared
to that of the cutting-edge out-of-GPU-memory solutions
LargeGraph-T and HyTGraph-T when handling large-scale
temporal graphs in Table 6. LargeGraph-T and HyTGraph-T
are the versions of cutting-edge out-of-GPU-memory graph
processing systems LargeGraph [77] and HyTGraph [65] that
incorporate [18, 19, 56]. The results show that TempGraph
outperforms LargeGraph-T and HyTGraph-T by 6.2-14.7x

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

and 3.3-8.7X%, respectively. Figure 20 further decomposes the
total computation time of TempGraph into the time taken by
CPU-GPU data transfer, GPU computation, and overlapping
phases. The results show that 55.3%-79.8% of CPU-GPU data
transfer time can be overlapped in TempGraph.

5.6 Performance on Dynamic Temporal Graphs
Figure 21 evaluates the end-to-end execution time of shortest
path over dynamic temporal graphs. Similar to [19], these
dynamic graphs are modeled using static graphs with a batch
size set to 100 K. This figure shows that TempGraph can
achieve higher performance in comparison to other solutions
on large-scale dynamic temporal graphs (e.g., WebUK). This
is because extensive time-dependent chains of these graphs
can be concurrently handled by TempGraph, resulting in
significant speedups. This way, the extra re-transformation
cost caused by graph updates can be effectively mitigated.

6 Related Work

CPU-based Graph Processing Systems. Over the past
decade, numerous CPU-based graph processing systems [12,
34,36,42,43, 49,50, 59,72, 78] have been designed. Pregel [39]
stands out as one of the earliest distributed systems, using

synchronous execution model for graph algorithms. CoRAL [61]

and FBSGraph [76] adopt asynchronous execution to ensure
fast state propagation and diminish synchronization costs.
GraphChi [31] and X-Stream [52] achieve efficient out-of-
core graph processing by sequentially accessing storage. To
reduce disk I/O cost, Vora et al. [60, 62] propose the dynamic
partition and cross-iteration value propagation technique. To
reduce repeated graph transfer across the memory hierarchy,
Input reduction [30], Wonderland [75], and Core Graph [25]
derive a smaller graph for a large graph and employ a two-
phase processing method. Pingali et al. [48] try to explore
parallelism for irregular applications. However, when ap-
plied to temporal graph computing, these solutions incur
substantial redundant costs. Besides, the sequential vertex
state propagation along temporal dependencies still incurs
issues of poor parallelism and slow convergence speed.
GPU-based Graph Processing Systems. The powerful
ability of GPU has prompted researchers to propose many
GPU-based graph processing systems [15, 27, 35, 37, 81].
Medusa [83] exemplifies the capabilities of GPU-based graph
processing. Gunrock [66] performs computation with a data-
centric frontier-focused abstraction. LargeGraph [77] uses a
path-based approach to handle static graphs on GPU. How-
ever, when processing temporal graphs, LargeGraph still
suffers from poor parallelism and slow convergence speed
due to inherent time dependencies between paths. To al-
leviate the irregularity of graphs, Tigr [53] proposes a vir-
tual transformation scheme to achieve efficient execution
on the GPU. To handle large graphs, Subway [54] dynami-
cally compacts the valid data at runtime to reduce host-GPU
communications. To maximize the utilization of host-GPU
bandwidth, HyTGraph [65] presents a hybrid data transfer

243

Jin Zhao et al.

method. However, these systems are mainly designed to pro-
cess static graphs. When employing them to handle temporal
graphs, they suffer from significant redundant data access
and computation overhead due to the costly extra operations
required to guarantee time constraints.

Temporal Graph Computing Systems. To efficiently
handle temporal graphs, many temporal graph computing

systems have been proposed recently [9, 41, 68-70]. Chronos [16,

44] uses a locality-aware scheduling method to exploit better
data locality. Dynamograph [57] extends Pregel to process
large-scale temporal graphs. However, they mainly apply
static execution model and gain suboptimal performance
due to high time complexity. Thus, some systems use a
transformation-based execution model for better performance.
ICM [10] extends Pregel to intuitively compose and execute
time-dependent graph algorithms, while WICM [1] tries to
reduce redundant computations and communications. To fur-
ther reduce redundant overhead, TeGraph [18, 19] presents
a temporal information-aware approach. Srikanth et al. [56]
try to accelerate fastest path problem via implementing GPU-
based parallel algorithms. Everest [74] focuses on making use
of the temporal constraints to generate motif-specific mining
code on GPU. However, due to the time constraints of tempo-
ral path problems, they still suffer from poor data parallelism
and slower convergence speed, struggling to fully utilize the
massive parallelism and high internal bandwidth of GPU. In
contrast, TempGraph decouples the temporal dependencies
among the data and allows these data to be efficiently han-
dled by massive GPU threads in parallel, achieving higher
data parallelism and faster convergence speed.

7 Conclusion

This paper proposes a novel GPU-based temporal graph
computing framework TempGraph to handle temporal path
problems efficiently. Specifically, it transforms the temporal
graph into a set of disjoint time-dependent chains and decou-
ples the temporal dependency among these chains. By such
means, it enables the vertex state to be quickly propagated
along these chains and drives these chains to be concurrently
handed by massive GPU threads, ensuring fast convergence
speed and high parallelism on the GPU. The experimental
results show that TempGraph improves the performance by
up to 16.2x over the cutting-edge GPU-based solutions.

Acknowledgments

The authors would like to thank our shepherd Rajiv Gupta
and all anonymous reviewers for their insightful comments.
This paper is supported by National Key Research and De-
velopment Program of China (No. 2023YFB4502300) and Na-
tional Natural Science Foundation of China (No. 62402457
and 62402456). This work was supported by the U.S. Depart-
ment of Energy, Office of Science, Advanced Scientific Com-
puting Research (ASCR), under contract DE-AC02-06CH11357.
Yu Zhang (zhyu@hust.edu.cn) is the corresponding author
of this paper.

TempGraph: An Efficient Chain-driven Temporal Graph Computing Framework on the GPU ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

References

(1]

(10]

(11]

Animesh Baranawal and Yogesh Simmhan. 2022. Optimizing the
interval-centric distributed computing model for temporal graph al-
gorithms. In Proceedings of the Seventeenth European Conference on
Computer Systems. 541-558.

Richard Bellman. 1958. On a routing problem. Quart. Appl. Math. 16, 1
(1958), 87-90.

Paolo Boldi, Massimo Santini, and Sebastiano Vigna. 2008. A large
time-aware web graph. SIGIR Forum 42, 2 (2008), 33-38.

Sebastian Buf}, Hendrik Molter, Rolf Niedermeier, and Maciej Rymar.
2020. Algorithmic Aspects of Temporal Betweenness. In Proceedings
of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining. 2084-2092.

Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and P. Krishna
Gummadi. 2010. Measuring User Influence in Twitter: The Million
Follower Fallacy. In Proceedings of the Fourth International Conference
on Weblogs and Social Media. 10-17.

Hongtao Chen, Mingxing Zhang, Ke Yang, Kang Chen, Albert Y.
Zomaya, Yongwei Wu, and Xuehai Qian. 2023. Achieving Sub-second
Pairwise Query over Evolving Graphs. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems. 1-15.

Kenneth L. Cooke and Eric Halsey. 1966. The shortest route through a
network with time-dependent internodal transit times. J. Math. Anal.
Appl. 14, 3 (1966), 493-498.

Edsger W. Dijkstra. 1959. A note on two problems in connexion with
graphs. Numer. Math. 1 (1959), 269-271.

Benjamin Erb, Dominik Meifner, Frank Kargl, Benjamin A. Steer, Felix
Cuadrado, Domagoj Margan, and Peter Pietzuch. 2018. Graphtides: a
framework for evaluating stream-based graph processing platforms.
In Proceedings of the 1st ACM SIGMOD Joint International Workshop
on Graph Data Management Experiences & Systems and Network Data
Analytics. 1-10.

Swapnil Gandhi and Yogesh Simmhan. 2020. An interval-centric model
for distributed computing over temporal graphs. In Proceedings of the
36th IEEE International Conference on Data Engineering. 1129-1140.
Tianao Ge, Tong Zhang, and Hongyuan Liu. 2024. ngAP: Non-blocking
Large-scale Automata Processing on GPUs. In Proceedings of the 29th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems. 268—285.

[12] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and

(13]

(14]

[15]

(16]

Carlos Guestrin. 2012. PowerGraph: Distributed Graph-Parallel Cmpu-
tation on Natural Graphs. In Proceedings of the 10th USENIX Symposium
on Oerating Systems Design and Implementation. 17-30.

Oded Green. 2021. HashGraph - Scalable Hash Tables Using a Sparse
Graph Data Structure. ACM Transactions on Parallel Computing 8, 2
(2021), 11:1-11:17.

Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie,
Hui Xiong, and Qing He. 2022. A Survey on Knowledge Graph-Based
Recommender Systems. IEEE Transactions on Knowledge and Data
Engineering 34, 8 (2022), 3549-3568.

Wei Han, Daniel Mawhirter, Bo Wu, and Matthew Buland. 2017. Gra-
phie: Large-scale asynchronous graph traversals on just a GPU. In
Proceedings of the 26th International Conference on Parallel Architectures
and Compilation Techniques. IEEE, 233-245.

Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong
Zhou, Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. 2014.
Chronos: a graph engine for temporal graph analysis. In Proceedings
of the Ninth European Conference on Computer Systems. 1:1-1:14.

[17] Jack Hessel, Chenhao Tan, and Lillian Lee. 2016. Science, AskScience,

and BadScience: On the Coexistence of Highly Related Communities.
In Proceedings of the Tenth International Conference on Web and Social
Media. 171-180.

244

(18]

[19]

[20]

[21]

[22]

[23]

Chengying Huan, Hang Liu, Mengxing Liu, Yongchao Liu, Changhua
He, Kang Chen, Jinlei Jiang, Yongwei Wu, and Shuaiwen Leon Song.
2022. TeGraph: A Novel General-Purpose Temporal Graph Computing
Engine. In Proceedings of the 38th IEEE International Conference on
Data Engineering. 578-592.

Chengying Huan, Yongchao Liu, Heng Zhang, Hang Liu, Shiyang
Chen, Shuaiwen Leon Song, and Yanjun Wu. 2024. TeGraph+: Scalable
Temporal Graph Processing Enabling Flexible Edge Modifications.
IEEE Transactions on Parallel and Distributed Systems 35, 8 (2024),
1469-1487.

Chengying Huan, Shuaiwen Leon Song, Santosh Pandey, Hang Liu,
Yongchao Liu, Baptiste Lepers, Changhua He, Kang Chen, Jinlei Jiang,
and Yongwei Wu. 2023. TEA: A General-Purpose Temporal Graph Ran-
dom Walk Engine. In Proceedings of the Eighteenth European Conference
on Computer Systems. 182-198.

Silu Huang, Ada Wai-Chee Fu, and Ruifeng Liu. 2015. Minimum
Spanning Trees in Temporal Graphs. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. 419-430.
Alexandru Iosup, Ahmed Musaafir, Alexandru Uta, Arnau Prat Pérez,
Gabor Szarnyas, Hassan Chafi, Ilie Gabriel Ténase, Lifeng Nai, Michael
Anderson, Mihai Capota, et al. 2020. The LDBC Graphalytics Bench-
mark. arXiv preprint arXiv:2011.15028 (2020).

Alexandru Iosup, Ahmed Musaafir, Alexandru Uta, Arnau Prat-
Pérez, Gabor Szarnyas, Hassan Chafi, Ilie Gabriel Tanase, Lifeng Nai,
Michael J. Anderson, Mihai Capota, Narayanan Sundaram, Peter A.
Boncz, Siegfried Depner, Stijn Heldens, Thomas Manhardt, Tim Hege-
man, Wing Lung Ngai, and Yinglong Xia. 2020. The LDBC Graphalytics
Benchmark. CoRR abs/2011.15028 (2020).

[24] Junteng Jia and Austin R. Benson. 2018. Detecting Core-Periphery

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Structure in Spatial Networks. CoRR abs/1808.06544 (2018).

Xiaolin Jiang, Mahbod Afarin, Zhijia Zhao, Nael B. Abu-Ghazaleh,
and Rajiv Gupta. 2024. Core Graph: Exploiting Edge Centrality to
Speedup the Evaluation of Iterative Graph Queries. In Proceedings of
the Nineteenth European Conference on Computer Systems. 18-32.
David Kempe, Jon M. Kleinberg, and Amit Kumar. 2002. Connectivity
and Inference Problems for Temporal Networks. J. Comput. System
Sci. 64, 4 (2002), 820-842.

Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan.
2014. CuSha: vertex-centric graph processing on GPUs. In Proceedings
of the 23rd International Symposium on High-performance Parallel and
Distributed Computing. 239-252.

Lauri Kovanen, Marton Karsai, Kimmo Kaski, Janos Kertész, and Jari
Saramaiki. 2011. Temporal motifs in time-dependent networks. Journal
of Statistical Mechanics: Theory and Experiment 2011, 11 (2011), P11005.
Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting
Dynamic Embedding Trajectory in Temporal Interaction Networks.
In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 1269-1278.

Amlan Kusum, Keval Vora, Rajiv Gupta, and Iulian Neamtiu. 2016. Ef-
ficient Processing of Large Graphs via Input Reduction. In Proceedings
of the 25th ACM International Symposium on High-Performance Parallel
and Distributed Computing. 245-257.

Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi:
Large-Scale Graph Computation on Just a PC. In Proceedings of the 10th
USENIX Symposium on Operating Systems Design and Implementation.
31-46.

[32] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Ma-

[33]

honey. 2009. Community Structure in Large Networks: Natural Cluster
Sizes and the Absence of Large Well-Defined Clusters. Internet Mathe-
matics 6, 1 (2009), 29-123.

Feifei Li. 2019. Cloud native database systems at Alibaba: Opportunities
and Challenges. Proceedings of the VLDB Endowment 12, 12 (2019),
2263-2272.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

(34]

(35]

[37

—

(38

—

(39]

[40

[t

(41

—

[42

—

[43

—

(44

[l

[45]

[46]

(47

—

(48

—

(49]

(50]

Xiaofei Liao, Jin Zhao, Yu Zhang, Bingsheng He, Ligang He, Hai Jin,
and Lin Gu. 2022. A Structure-Aware Storage Optimization for Out-of-
Core Concurrent Graph Processing. IEEE Trans. Comput. 71, 7 (2022),
1612-1625.

Hang Liu and H. Howie Huang. 2019. SIMD-X: Programming and
Processing of Graph Algorithms on GPUs. In Proceedings of the 2019
USENIX Annual Technical Conference. 411-428.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. 2012. Distributed GraphLab: A
Framework for Machine Learning in the Cloud. Proceedings of the
VLDB Endowment 5, 8 (2012), 716-727.

Lingxiao Ma, Zhi Yang, Han Chen, Jilong Xue, and Yafei Dai. 2017.
Garaph: Efficient GPU-accelerated Graph Processing on a Single Ma-
chine with Balanced Replication. In Proceedings of the 2017 USENIX
Annual Technical Conference. 195-207.

Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z. Sheng,
Hui Xiong, and Leman Akoglu. 2023. A Comprehensive Survey on
Graph Anomaly Detection With Deep Learning. IEEE Transactions on
Knowledge and Data Engineering 35, 12 (2023), 12012-12038.
Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a
system for large-scale graph processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data. 135-146.
Junbin Mao, Hanhe Lin, Xu Tian, Yi Pan, and Jin Liu. 2023. FedGST:
Federated Graph Spatio-Temporal Framework for Brain Functional
Disease Prediction. In Proceedings of the 2023 IEEE International Con-
ference on Bioinformatics and Biomedicine. 1356-1361.

Domagoj Margan and Peter Pietzuch. 2017. Large-scale stream graph
processing: doctoral symposium. In Proceedings of the 11th ACM Inter-
national Conference on Distributed and Event-based Systems. 378-381.
Mugilan Mariappan, Joanna Che, and Keval Vora. 2021. DZiG: sparsity-
aware incremental processing of streaming graphs. In Proceedings of
the Sixteenth European Conference on Computer Systems. 83-98.
Mugilan Mariappan and Keval Vora. 2019. GraphBolt: Dependency-
Driven Synchronous Processing of Streaming Graphs. In Proceedings of
the Fourteenth European Conference on Computer Systems. 25:1-25:16.
Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu, Fan Yang, Lidong
Zhou, Vijayan Prabhakaran, Enhong Chen, and Wenguang Chen. 2015.
Immortalgraph: A system for storage and analysis of temporal graphs.
ACM Transactions on Storage 11, 3 (2015), 1-34.

Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K.
Ahmed, Eunyee Koh, and Sungchul Kim. 2018. Continuous-Time
Dynamic Network Embeddings. In Proceedings of the 27th World Wide
Web Conference. 969-976.

Raj Kumar Pan and Jari Saramaki. 2011. Path lengths, correlations,
and centrality in temporal networks. Physical Review E—Statistical,
Nonlinear, and Soft Matter Physics 84, 1 (2011), 016105.

René Pfitzner, Ingo Scholtes, Antonios Garas, Claudio J Tessone, and
Frank Schweitzer. 2013. Betweenness preference: Quantifying corre-
lations in the topological dynamics of temporal networks. Physical
Review Letters 110, 19 (2013), 198701.

Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher,
Muhammad Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, An-
drew Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios
Prountzos, and Xin Sui. 2011. The tao of parallelism in algorithms.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation. 12-25.

Hao Qi, Kang Luo, Ligang He, Yu Zhang, Minzhi Cai, Jingxin Dai,
Bingsheng He, Hai Jin, Zhan Zhang, Jin Zhao, Hengshan Yue, Hui
Yu, and Xiaofei Liao. 2025. OHMiner: An Overlap-centric System for
Efficient Hypergraph Pattern Mining. In Proceedings of the Twentieth

European Conference on Computer Systems. 621-636.
Hao Qi, Yiyang Wu, Ligang He, Yu Zhang, Kang Luo, Minzhi Cai, Hai

Jin, Zhan Zhang, and Jin Zhao. 2024. LSGraph: A Locality-centric High-
performance Streaming Graph Engine. In Proceedings of the Nineteenth

245

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Jin Zhao et al.

European Conference on Computer Systems. 33—-49.

Shriram Ramesh, Animesh Baranawal, and Yogesh Simmhan. 2021.
Granite: A distributed engine for scalable path queries over temporal
property graphs. . Parallel and Distrib. Comput. 151 (2021), 94-111.
Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream:
Edge-centric graph processing using streaming partitions. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples. 472-488.

Amir Hossein Nodehi Sabet, Jungiao Qiu, and Zhijia Zhao. 2018. Tigr:
Transforming Irregular Graphs for GPU-Friendly Graph Processing.
In Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
622-636.

Amir Hossein Nodehi Sabet, Zhijia Zhao, and Rajiv Gupta. 2020. Sub-
way: Minimizing data transfer during out-of-GPU-memory graph
processing. In Proceedings of the Fifteenth European Conference on
Computer Systems. 1-16.

Julian Shun and Guy E. Blelloch. 2013. Ligra: a lightweight graph pro-
cessing framework for shared memory. In Proceedings of the 2013 ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming.
135-146.

Mithinti Srikanth, Prashant Singh, and G. Ramakrishna. 2024. GPU Al-
gorithms for Fastest Path Problem in Temporal Graphs. In Proceedings
of the 53rd International Conference on Parallel Processing. 587-596.
Matthias Steinbauer and Gabriele Anderst-Kotsis. 2016. Dynamo-
Graph: extending the Pregel paradigm for large-scale temporal graph
processing. International Journal of Grid and Utility Computing 7, 2
(2016), 141-151.

Martin Strohmeier, Xavier Olive, Jannis Liibbe, Matthias Schéfer, and
Vincent Lenders. 2021. Crowdsourced air traffic data from the OpenSky
Network 2019-2020. Earth System Science Data 13, 2 (2021), 357-366.
Pourya Vaziri and Keval Vora. 2021. Controlling Memory Footprint
of Stateful Streaming Graph Processing. In Proceedings of the 2021
USENIX Annual Technical Conference. 269-283.

Keval Vora. 2019. LUMOS: Dependency-Driven Disk-based Graph Pro-
cessing. In Proceedings of the 2019 USENIX Annual Technical Conference.
429-442.

Keval Vora, Chen Tian, Rajiv Gupta, and Ziang Hu. 2017. Coral: Con-
fined recovery in distributed asynchronous graph processing. ACM
SIGARCH Computer Architecture News 45, 1 (2017), 223-236.

Keval Vora, Guoqing Xu, and Rajiv Gupta. 2016. Load the Edges You
Need: A Generic I/0 Optimization for Disk-based Graph Processing. In
Proceedings of the 2016 USENIX Annual Technical Conference. 507-522.
Haoran Wang, Licheng Jiao, Fang Liu, Lingling Li, Xu Liu, Deyi Ji, and
Weihao Gan. 2023. Learning Social Spatio-Temporal Relation Graph
in the Wild and a Video Benchmark. IEEE Transactions on Neural
Networks and Learning Systems 34, 6 (2023), 2951-2964.

[64] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao,

[65]

[66]

and Dik Lun Lee. 2018. Billion-scale Commodity Embedding for E-
commerce Recommendation in Alibaba. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 839-848.

Qiange Wang, Xin Ai, Yanfeng Zhang, Jing Chen, and Ge Yu. 2023.
HyTGraph: GPU-Accelerated Graph Processing with Hybrid Transfer
Management. In Proceedings of the 39th IEEE International Conference
on Data Engineering. 558-571.

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D. Owens. 2016. Gunrock: A high-performance graph
processing library on the GPU. In Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 1-12.

[67] Jack Waudby, Benjamin A. Steer, Arnau Prat-Pérez, and Gabor

Szarnyas. 2020. Supporting Dynamic Graphs and Temporal Entity
Deletions in the LDBC Social Network Benchmark’s Data Genera-
tor. In Proceedings of the 3rd Joint International Workshop on Graph

TempGraph: An Efficient Chain-driven Temporal Graph Computing Framework on the GPU ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Data Management Experiences & Systems and Network Data Analytics. [76] Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, and Bing Bing Zhou. 2018.
8:1-8:8. FBSGraph: Accelerating Asynchronous Graph Processing via Forward
[68] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan and Backward Sweeping. IEEE Transactions on Knowledge and Data
Xu. 2014. Path Problems in Temporal Graphs. Proceedings of the VLDB Engineering 30, 5 (2018), 895-907.
Endowment 7, 9 (2014), 721-732. [77] Yu Zhang, Da Peng, Xiaofei Liao, Hai Jin, Haikun Liu, Lin Gu, and
[69] Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, Bingsheng He. 2021. LargeGraph: An Efficient Dependency-Aware
and Hejun Wu. 2016. Efficient Algorithms for Temporal Path Compu- GPU-Accelerated Large-Scale Graph Processing. ACM Transactions on
tation. IEEE Transactions on Knowledge and Data Engineering 28, 11 Architecture and Code Optimization 18, 4 (2021), 58:1-58:24.
(2016), 2927-2942. [78] Jin Zhao, Yu Zhang, Ligang He, Qikun Li, Xiang Zhang, Xinyu Jiang,
[70] Huanhuan Wu, Yuzhen Huang, James Cheng, Jinfeng Li, and Yip- Hui Yu, Xiaofei Liao, Hai Jin, Lin Gu, Haikun Liu, Bingsheng He, Ji
ing Ke. 2016. Reachability and time-based path queries in temporal Zhang, Xianzheng Song, Lin Wang, and Jun Zhou. 2023. GraphTune:
graphs. In Proceedings of the 32nd IEEE International Conference on An Efficient Dependency-Aware Substrate to Alleviate Irregularity in
Data Engineering. 145-156. Concurrent Graph Processing. ACM Transactions on Architecture and
[71] Liang Xiang, Quan Yuan, Shiwan Zhao, Li Chen, Xiatian Zhang, Qing Code Optimization 20, 3 (2023), 37:1-37:24.
Yang, and Jimeng Sun. 2010. Temporal recommendation on graphs [79] Jin Zhao, Yu Zhang, Xiaofei Liao, Ligang He, Bingsheng He, Hai Jin,
via long- and short-term preference fusion. In Proceedings of the 16th Haikun Liu, and Yicheng Chen. 2019. GraphM: an efficient storage
ACM SIGKDD International Conference on Knowledge Discovery and system for high throughput of concurrent graph processing. In Pro-
Data Mining. 723-732. ceedings of the 2019 International Conference for High Performance
[72] Chengshuo Xu, Keval Vora, and Rajiv Gupta. 2019. PnP: Pruning and Computing, Networking, Storage and Analysis. 3:1-3:14.
Prediction for Point-To-Point Iterative Graph Analytics. In Proceedings [80] Yifeng Zhao, Xiangwei Wang, Hongxia Yang, Le Song, and Jie Tang.
of the Twenty-Fourth International Conference on Architectural Support 2019. Large Scale Evolving Graphs with Burst Detection. In Proceed-
for Programming Languages and Operating Systems. 587-600. ings of the Twenty-Eighth International Joint Conference on Artificial
[73] Xizhe Yin, Zhijia Zhao, and Rajiv Gupta. 2023. Glign: Taming Mis- Intelligence. 4412-4418.
aligned Graph Traversals in Concurrent Graph Processing. In Proceed- [81] Long Zheng, Xianliang Li, Yaohui Zheng, Yu Huang, Xiaofei Liao, Hai
ings of the 28th ACM International Conference on Architectural Support Jin, Jingling Xue, Zhiyuan Shao, and Qiang-Sheng Hua. 2020. Scaph:
for Programming Languages and Operating Systems. 78-92. Scalable GPU-Accelerated Graph Processing with Value-Driven iffer-
[74] Yichao Yuan, Haojie Ye, Sanketh Vedula, Wynn Kaza, and Nishil Talati. ential Scheduling. In Proceedings of the 2020 USENLX Annual Technical
2023. Everest: GPU-Accelerated System For Mining Temporal Motifs. Conference. 573-588.
Proceedings of the VLDB Endowment 17, 2 (2023), 162-174. [82] Yunling Zheng, Zhijian Li, Jack Xin, and Guofa Zhou. 2021. A Spatial-
[75] Mingxing Zhang, Yongwei Wu, Youwei Zhuo, Xuehai Qian, Chengying temporal Graph based Hybrid Infectious Disease Model with Applica-
Huan, and Kang Chen. 2018. Wonderland: A Novel Abstraction-Based tion to COVID-19. In Proceedings of the 10th International Conference
Out-Of-Core Graph Processing System. In Proceedings of the Twenty- on Pattern Recognition Applications and Methods. 357-364.
Third International Conference on Architectural Support for Program- [83] Jianlong Zhong and Bingsheng He. 2013. Medusa: Simplified graph
ming Languages and Operating Systems. 608—621. processing on GPUs. IEEE Transactions on Parallel and Distributed

Systems 25, 6 (2013), 1543-1552.

246

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Temporal Graph Computing
	2.2 The Need for GPU Acceleration
	2.3 Challenges of Efficient Temporal Graph Computing on GPU

	3 Overview of TempGraph
	3.1 Chain-driven Parallel Execution Model
	3.2 System Architecture

	4 Implementation of TempGraph
	4.1 Chain-based Temporal Graph Transformation
	4.2 Skeleton-graph Generation
	4.3 Shortcut-guided Parallel Computing
	4.4 Layout Optimization for GPU Architectures
	4.5 Supporting of Out-of-GPU-Memory Processing

	5 Evaluation
	5.1 Experimental Setup
	5.2 Overall Performance
	5.3 Scalability of TempGraph
	5.4 Performance of Layout Optimization
	5.5 Performance of Out-of-GPU-Memory Processing
	5.6 Performance on Dynamic Temporal Graphs

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

