
TaGNN: An Efficient Topology-aware Accelerator for
High-performance Dynamic Graph Neural Network

Hui Yu∗
National Engineering Research

Center for Big Data Technology and
System, Services Computing

Technology and System Lab, Cluster
and Grid Computing Lab, School of
Computer Science and Technology
Huazhong University of Science and

Technology
Wuhan, China

huiy@hust.edu.cn

Yu Zhang
National Engineering Research

Center for Big Data Technology and
System, Services Computing

Technology and System Lab, Cluster
and Grid Computing Lab, School of
Computer Science and Technology
Huazhong University of Science and

Technology
Wuhan, China

zhyu@hust.edu.cn

Ligang He
University of Warwick

Coventry, United Kingdom
ligang.he@warwick.ac.uk

Bing Peng
National Engineering Research

Center for Big Data Technology and
System, Services Computing

Technology and System Lab, Cluster
and Grid Computing Lab, School of
Computer Science and Technology
Huazhong University of Science and

Technology
Wuhan, China

bpeng@hust.edu.cn

Jin Zhao
National Engineering Research

Center for Big Data Technology and
System, Services Computing

Technology and System Lab, Cluster
and Grid Computing Lab, School of
Computer Science and Technology
Huazhong University of Science and

Technology
Wuhan, China

zjin@hust.edu.cn

Zixiao Wang
National Engineering Research

Center for Big Data Technology and
System, Services Computing

Technology and System Lab, Cluster
and Grid Computing Lab, School of
Computer Science and Technology
Huazhong University of Science and

Technology
Wuhan, China

zwang62@hust.edu.cn

Hao Qi
National Engineering Research

Center for Big Data Technology and
System, Services Computing

Technology and System Lab, Cluster
and Grid Computing Lab, School of
Computer Science and Technology
Huazhong University of Science and

Technology
Wuhan, China

theqihao@hust.edu.cn

Hai Jin
National Engineering Research

Center for Big Data Technology and
System, Services Computing

Technology and System Lab, Cluster
and Grid Computing Lab, School of
Computer Science and Technology
Huazhong University of Science and

Technology
Wuhan, China

hjin@hust.edu.cn

∗Department of Electronic and Computer Engineering, The Hong Kong University of
Science and Technology, Hongkong, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC ’25, St Louis, MO, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1466-5/25/11
https://doi.org/10.1145/3712285.3759818

Abstract
Dynamic Graph Neural Networks (DGNNs) have become powerful
tools for analyzing continuously evolving graph data, combining
Graph Neural Network (GNN) models to extract structural informa-
tion and Recurrent Neural Network (RNN) models to capture tempo-
ral semantics across snapshots. However, despite extensive research,
existing DGNN solutions still face significant limitations, particu-
larly low data parallelism caused by their snapshot-by-snapshot ex-
ecution. This sequential paradigm exacerbates memory contention
due to irregular, repeated vertex feature accesses and enforces strict
temporal dependencies. In this paper, we propose TaGNN, an effi-
cient topology-aware DGNN accelerator that addresses these per-
formance bottlenecks. Specifically, we present a topology-aware

237

https://orcid.org/0000-0002-6559-6111
https://orcid.org/0000-0003-0718-8045
https://orcid.org/0000-0002-5671-0576
https://orcid.org/0009-0004-9313-3722
https://orcid.org/0000-0003-4217-7886
https://orcid.org/0000-0002-7319-4729
https://orcid.org/0000-0002-3273-5381
https://orcid.org/0000-0002-3934-7605
https://doi.org/10.1145/3712285.3759818
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712285.3759818&domain=pdf&date_stamp=2025-11-15

SC ’25, November 16–21, 2025, St Louis, MO, USA Hui Yu et al.

concurrent execution approach into the accelerator design that cal-
culates the final features of affected vertices while ensuring that
unaffected vertices are loaded and computed only once per layer
across multiple snapshots, maximizing data parallelism while mini-
mizing memory usage. TaGNN employs a cache-friendly storage
format that compactly organizes affected vertices across multiple
snapshots by their timestamps and topological characteristics, re-
ducing indexing overhead and enhancing data locality. In addition,
TaGNN further proposes a similarity-aware cell skipping strategy
to alleviate the stringent temporal data dependencies. It selectively
reuses the RNN results from the previous snapshot to bypass RNN
operations in the current snapshot when the output features of the
GNN module across two consecutive snapshots are similar, achiev-
ing significant efficiency gains with minimal accuracy loss. We
have implemented and assessed TaGNN on a Xilinx Alveo U280
FPGA card. Experimental results show that TaGNN achieves aver-
age speedups of 535.2x and 84.3x, and energy savings of 742.6x and
104.9x over state-of-the-art software DGNNs on Intel Xeon CPUs
and NVIDIA A100 GPUs, respectively. Compared to leading DGNN
accelerators (i.e., DGNN-Booster, E-DGCN, and Cambricon-DG),
TaGNN delivers average speedups of 13.5x, 10.2x, and 6.5x, and
energy savings of 15.9x, 11.7x, and 7.8x, respectively.

CCS Concepts
• Computer systems organization → Parallel architectures; •
Computing methodologies→Machine learning approaches.

Keywords
DGNN inference, dynamic graphs, hardware architecture
ACM Reference Format:
Hui Yu, Yu Zhang, Ligang He, Bing Peng, Jin Zhao, Zixiao Wang, Hao Qi,
and Hai Jin. 2025. TaGNN: An Efficient Topology-aware Accelerator for
High-performance Dynamic Graph Neural Network. In The International
Conference for High Performance Computing, Networking, Storage and Anal-
ysis (SC ’25), November 16–21, 2025, St Louis, MO, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3712285.3759818

1 Introduction
Dynamic Graph Neural Networks (DGNNs) [29] have garnered sig-
nificant attention as a powerful tool for analyzing dynamic graph-
structured data. DGNNs possess the unique ability to process a
series of graph snapshots, learning time-varying vertex representa-
tions that capture the dynamic patterns and evolutionary processes
within the graph structure. This inherent capacity to model the
temporal aspects of graphs renders DGNNs particularly well-suited
for a wide range of the forefront of various applications, such as
dynamic node classification [20, 21], dynamic link prediction [8, 25],
and anomaly detection in dynamic graphs [5, 31, 34].

To improve the performance of DGNN models, many software
and hardware solutions have been recently proposed, and they
strive to make full use of high sequential memory bandwidth [7, 39],
reduce the data transfer volume and time [5, 31], enhance data
locality [19, 30], etc. Despite extensive efforts to optimize DGNN
models, as summarized in Table 1, prevailing solutions continue
to face challenge related to low data parallelism, primarily caused
by excessive irregular memory access and stringent temporal data
dependencies, both of which stem from the following reasons.

Table 1: A comparative analysis of state-of-the-art solutions
for supporting DGNN inference

Solutions Dynamic graph Alleviate data dependencies Better data locality High data parallelism

DGL [32] % % % %

DGNN-Booster [7] ! % % %

E-DGCN [46] ! % % %

Cambricon-DG [40] ! % ! %

TaGNN ! ! ! !

G

G1

G2

Input Feature

G3

G4

G5

G6

GNN

Gt

... GNN

...

Representation Feature

..

Z1
Z2 Z3

..

Z4
Z5 Z6

..

Zt

...

..

Z7

G7
...

GNN RNN

RNN

RNN

H3

H6

Hidden Feature

..

H1
H3H2

..

H4
H6H5

.. ..

H7
Ht

...

...

Dynamic Graph Neural Network (DGNN)

Graph Neural Network (GNN) Recurrent Neural Network (RNN)

(a)

(b) (c)

1-st iteration

2-nd iteration

T-th iteration

yv
k

yu
k

Wgnn zv
k

zu
k

...

...

...

G1 G2 G3

x1
k x2

k x3
k

Uf,i,c,o

Wf,i,c,o

+



tanh







.

tanh

. +

.

ht-1

st-1
zt

ot

ct

it
ft

ht

st

gatet

Aggregation Combination

Cell-update

 Figure 1: An illustrative example for DGNN inference with
the sliding window parameter set to 3, including (a) the com-
prehensive execution flow, (b) a representative GNN module,
and (c) a characteristic RNN module

First, existing solutions predominantly operate on isolated snap-
shot graphs, performing intact propagation computations per times-
tamp (i.e., snapshot-by-snapshot execution pattern). This leads to
excessive irregular memory access overhead, as the graph structure
is not only sparse but also dynamically changing. Specifically, these
solutions need to frequently and inefficiently process the features
of vertices during DGNN inference, however, the size of these fea-
tures is typically too large to fit within on-chip memory (e.g., 512
or 1,024 dimensions [37, 39]), resulting in irregular off-chip com-
munication. Worse still, an overwhelming majority of this off-chip
communication involves redundant access to unaffected vertices
(i.e., vertices that maintain identical neighbors, features, and neigh-
bors’ features across multiple snapshots), which further exacerbates
the inefficiency by consuming additional bandwidth and computa-
tional resources without improving inference efficiency.

Second, DGNN models incorporate substantial temporal com-
ponents (e.g., LSTM [41]) for capturing the temporal semantics.
It means the computation must adhere to the time sequence for
capturing the temporal information, which results in temporal
data dependency bottleneck. Specifically, the inter-snapshot and
intra-snapshot temporal data dependency within the DGNN mod-
els collectively limit the computation parallelism from different
dimensions, leading to low hardware utilization and suboptimal
performance on parallel computing platforms. Furthermore, the
traditional snapshot-by-snapshot execution pattern may exacerbate
this situation, as it fails to exploit the potential parallelism across
multiple snapshots, and instead processes each snapshot sequen-
tially, causing severe underutilization of hardware resources.

238

https://doi.org/10.1145/3712285.3759818

TaGNN: An Efficient Topology-aware Accelerator for High-performance Dynamic Graph Neural Network SC ’25, November 16–21, 2025, St Louis, MO, USA

To enhance the data parallelism of DGNNs, the most straight-
forward approach is to enable simultaneous inference of multiple
snapshots (i.e., multi-snapshot execution pattern), as the GNN op-
erations across different snapshots during DGNN inference are
inherently independent of data dependencies [20, 21, 24]. However,
directly extending existing solutions to support multi-snapshot
inference presents two significant challenges. First, concurrently
processing multiple snapshots requires a substantially larger mem-
ory footprint. For example, supporting four snapshots of the Flickr
dataset in Table 2 would demand over 11.2 GB of memory, which
exceeds the capacity of existing architectures. Second, although
multi-snapshot execution pattern could improve the data paral-
lelism of DGNN inference, the presence of irregular memory access
and temporal data dependencies within DGNNs fundamentally
constrains the achievable parallelism.

To address performance bottlenecks in DGNNs, our investigation
uncovers two critical insights based on the unique characteristics
of these models. First, we observe a significant overlap of vertices
across multiple snapshots, with only a small fraction of vertices
and their associated features being updated between consecutive
snapshots [3, 5, 31]. This finding supports the implementation of a
multi-snapshot execution pattern, which allows for concurrent pro-
cessing of multiple graph inputs, thereby enhancing throughput by
leveraging overlapping features across snapshots. Second, our anal-
ysis indicates that a substantial portion of computations involved in
updating RNN cells may be excessive due to the inherent stability of
DGNN models. We find a strong correlation between the similarity
of final embeddings and output features of the GNN module across
consecutive snapshots. This allows us to judiciously skip cell up-
date computations for vertices with similar input features, reusing
previous output results and effectively eliminating unnecessary
computations and memory accesses with minimal impact on model
accuracy. Based on these insights, we propose a topology-aware con-
current execution approach to achieve high data parallelism while
reducing redundant memory usage and alleviating temporal data
dependencies for DGNN inference.

To fully leverage our approach, we introduce TaGNN, a topology-
aware DGNN accelerator designed for enhanced performance and
energy efficiency inDGNN inference. TaGNN enablesmulti-snapshot
execution by identifying affected vertices, which serve as root ver-
tices to prefetch their neighbors impacted by graph updates, thus
constructing the affected subgraph. This subgraph encapsulates all
vertices and their neighbors affected across snapshots (i.e., affected
vertices), allowing TaGNN to efficiently compute and load unaf-
fected vertices only once, significantly reducing redundant memory
footprint and massive off-chip communication. To further optimize
parallel processing and achieve better data locality of the affected
subgraph, TaGNN employs a cache-friendly Overlap-Compressed
Sparse Row (O-CSR) storage format to effectively represents vertex
and temporal information across multiple snapshots, capitalizing
on the sparsity and temporal locality of graph data for efficient stor-
age and rapid access. Additionally, TaGNN integrates a similarity-
aware cell skip strategy to minimize unnecessary computations and
address intra-snapshot and inter-snapshot temporal data dependen-
cies. By evaluating the similarity of output features from the GNN
module across two consecutive snapshots, TaGNN dynamically de-
termines whether to perform cell updates for each vertex at current

snapshot. When input features exhibit high similarity, TaGNN can
skip the cell update computation and reuse the previous results,
thereby significantly reducing massive unnecessary computations
with negligible model accuracy loss.

TaGNN features an overlap-aware data loading mechanism de-
signed to minimize data loading overhead through specialized hard-
ware pipelines that operate in a dataflow style of parallelism. Addi-
tionally, TaGNN incorporates an adaptive data similarity computa-
tion scheme that utilizes dedicated hardware to efficiently calculate
the similarity scores of affected vertices between consecutive snap-
shots. This information then guides subsequent cell updates, opti-
mizing computation efficiency and mitigating data dependencies.

We have implemented and evaluated TaGNN on a Xilinx Alveo
U280 FPGA card. Experimental results demonstrate that for DGNN
inference, TaGNN achieves average speedups of 535.2x and 84.3x,
and energy savings of 742.6x and 104.9x, compared to the cutting-
edge software DGNN solutions running on an Intel Xeon CPU
and an NVIDIA A100 GPU, respectively. Furthermore, TaGNN con-
sistently outperforms leading DGNN inference accelerators, i.e.,
DGNN-Booster, E-DGCN, and Cambricon-DG, achieving average
speedups of 6.5x, 10.2x, and 13.5x, and improvements in energy
consumption of 7.8x, 11.7x, and 15.9x on average, respectively.

2 Background and Motivation
We review the background for DGNNs and undertake a comprehen-
sive analysis to identify the gap between DGNNs and the analogous
solutions in the domain, and describe our motivation.
2.1 Background of DGNN
Dynamic Graphs [5, 29, 38]. In the real-world scenarios [29, 44],
graphs frequently evolve over time through the addition or deletion
of vertices and edges, as well as feature mutations. Formally, a
dynamic graph is defined as 𝐺 = {𝐺1,𝐺2, · · · ,𝐺𝑇 }, where 𝐺𝑡 =

(𝑉𝑡 , 𝐸𝑡 , 𝑋𝑡) denotes the snapshot 𝑡 . Here𝑉𝑡 is the set of vertices that
be added/removed over time, 𝐸𝑡 signifies the changing set of edges
at snapshot 𝑡 , and 𝑋𝑡 represents the evolving vertex feature vectors
across snapshots. Note that we exploit the CSR format [42, 43] to
store each graph snapshot of the dynamic graph.

DynamicGraphNeuralNetwork (DGNN) [8, 20, 21, 24, 29, 31].
DGNN inference operates under a sliding window processing para-
digm and may consist of multiple layers. As illustrated in Figure
1, DGNN inference has two key components: the Graph Neural
Network (GNN) [9, 16] module and the Recurrent Neural Network
(RNN) [22, 41] module, each tasked with processing individual
graph snapshots. In Figure 1 (b), the GNNmodule extracts represen-
tative vector data for all vertices within a snapshot, generating the
output feature 𝑍𝑘 for snapshot 𝐺𝑘 . This process involves essential
operations of aggregation and combination, after which the output
feature is passed to the RNN module. As shown in Figure 1 (c),
the RNN module synthesizes hidden feature representations that
capture both the structural dynamics of the graph and its temporal
characteristics, ultimately producing the final feature 𝐻𝑘 .

We observe that the above DGNN methodology provides the
flexibility to construct a DGNN model utilizing various implemen-
tations of GNN and RNN modules [8, 20, 21, 24]. While this pa-
per focuses on GCN-based models due to their widespread use in
DGNNs [29], TaGNN is highly versatile and adaptable to a broad
range of DGNN models, including those that do not rely on RNNs.

239

SC ’25, November 16–21, 2025, St Louis, MO, USA Hui Yu et al.

(a) (b) (c) (d)

HP GT ML EP FK HP GT ML EP FK HP GT ML EP FK
0

20

40

60

80

100

R
at

io
 o

f
ex

ec
u

ti
o

n
 t

im
e

(%
)

Aggregation Combination Cell-update

CD-GCN GC-LSTM T-GCN

avg.

HP GT ML EP FK
0

1

2

3

4

S
p

ee
d

u
p

PyGT CacheG ESDG PiPAD

HP GT ML EP FK
0

2

4

6

8

10

12

14

16

18

20

R
at

io
 o

f
th

e
fe

tc
h

ed
 u

se
fu

l
d

at
a

(%
)

PiPAD ESDG PyGT

HP GT ML EP FK HP GT ML EP FK HP GT ML EP FK
0

20

40

60

80

100

L
at

en
cy

 b
re

ak
d

o
w

n
 (

%
)

CD-GCN

Memory access Data computation

GC-LSTM T-GCN

10

15

20

25
SM utilization

S
M

 u
ti

li
za

it
o

n
 (

%
)

 Figure 2: Studies of the performance of DGNN inference: (a) the execution time breakdown of PiPAD; (b) the execution time
normalized to that of PyGT for T-GCN model; (c) the ratio of fetched useful data to all data accesses across four snapshots for
the T-GCN model on different systems; (d) latency breakdown and SM utilization of PiPAD on NVIDIA Tesla A100

Table 2: The real-life dynamic graph datasets
Datasets #𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 #𝐸𝑑𝑔𝑒𝑠 #𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 #𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑠 # 𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦

HepPh(HP) 28,090 1,543,901 172 243 1 day
Gdelt (GT) 7,398 238,765 248 288 1 month

MovieLens (ML) 9,992 1,000,209 500 100 4 days
Epinions (EP) 876,252 13,668,320 220 51 10 day
Flicker (FK) 2,302,925 33,140,017 162 134 1.5 days

2.2 Pitfalls of Exiting DGNN Solutions
Current solutions for DGNN inference suffer from significantly
low data parallelism, primarily due to massive irregular memory
access and temporal data dependencies. They typically employ a
snapshot-by-snapshot execution paradigm, requiring the repeated
and inefficient loading of vertex features via frequent off-chip trans-
fers, which exacerbates memory contention and leads to substantial
irregular access patterns. Moreover, the temporal data dependen-
cies further constrain the degree of parallelism achievable in these
solutions. These limitations collectively hinder the scalability and
throughput of existing DGNN solutions.

To elucidate the aforementioned challenges, we conducted an
evaluation of four cutting-edge DGNN software frameworks: PyGT
[27], CacheG [19], ESDG [5], and PiPAD [31]. These frameworks
adhere to the snapshot-by-snapshot execution paradigm and are as-
sessed by executing various DGNNmodels across different datasets,
as depicted in Table 2. An in-depth discussion of the DGNN models
and system configurations is provided in Section 5.

Figure 2 (a) presents the execution time breakdown across five
datasets using three DGNN models: CD-GCN [21], GC-LSTM [8],
and T-GCN [45]. While execution times vary based on the dataset
and model combination, the aggregation and update (comprising
both the GNN module’s combination and the RNN module’s cell-
update operations) operations are consistently time-consuming.
For instance, the execution time for the aggregation can reach
77.48% for T-GCN on the HP dataset, while it may drop to 49.51%
for CD-GCN on the GT dataset. Therefore, optimizing both the
aggregation and update operations is essential for enhancing DGNN
execution efficiency. As depicted in Figure 2 (b), although PiPAD
outperforms other DGNN systems in all evaluated scenarios, it
remains suboptimal due to two primary issues:

Irregular Memory Access. Current solutions for DGNN in-
ference predominantly utilize the snapshot-by-snapshot execution
paradigm (i.e., sliding window = 1) [5, 13, 19, 27, 31, 39]. Under this
execution pattern, each graph snapshot is processed sequentially,
leading to significant low data parallelism. Although some meth-
ods [4, 5, 19, 31, 39] attempt to leverage various caching strategies to
reduce off-chip communication, they remain constrained by exces-
sive redundant accesses and unnecessary data transfers, resulting in

(b)(a)
HP GT ML EP FK

0

20

40

60

80

R
at

io
 o

f
u
n
af

fe
ct

ed
 v

er
ti

ce
s

to
 a

ll
 v

er
ic

es
 (

%
)

Two-snapshots Three-snapshots Four-snapshots

Δ= -0.8 Δ= -0.4 Δ=0.1 Δ=0.4 Δ=0.8
30

40

50

60

70

80
 Output similarity Model accuracy

Differential parameter

O
u

tp
u

t
si

m
il

ar
it

y
 (

%
)

30

40

50

60

70

80

 M
o

d
el

 a
cc

u
ra

cy
 (

%
)

 Figure 3: (a) the ratio of unaffected vertices to all vertices
across different snapshots; (b) impact of output feature dif-
ference on final feature similarity and model accuracy

suboptimal performance. Figure 4 (a) illustrates this issue, showing
that vertex 𝑣1 shares identical features, 1-hop neighbors (i.e., 𝑣0
and 𝑣2), and neighbors features across three consecutive snapshots.
Consequently, these neighbors, features, and weight matrices (e.g.,
𝑊𝑅𝑁𝑁) are accessed repeatedly, and computations (e.g., aggrega-
tion operations) are unnecessarily repeated three times. Therefore,
existing solutions lead to substantial redundant data accesses in
DGNN processing. As shown in Figure 2 (c), although PiPAD out-
performs other methods in all tested scenarios, over 81.7% of its
data accesses remain redundant.

Temporal Data Dependency. DGNN inference encounters
both inter-snapshot and intra-snapshot temporal data dependencies
that significantly limit parallelism and hardware resource utiliza-
tion. First, the inter-snapshot dependency within the RNN module
requires that the computation of the current snapshot relies on the
hidden state from the previous snapshot, thereby preventing paral-
lelization across snapshots. Second, the intra-snapshot dependency
between the GNN and RNN modules dictates that RNN computa-
tions can only begin after the GNNhas completed feature extraction,
hindering effective pipelining between these modules. Collectively,
these dependencies impose severe constraints on the parallelism
of DGNNs, resulting in low hardware utilization and suboptimal
performance. As shown in Figure 2 (d), the SM utilization of PiPAD
remains below 22.3% across various datasets and DGNN models.
Furthermore, significant memory access overhead (accounting for
on average 70.4% of the total execution time) exacerbates these in-
efficiencies. Thus, the interplay of temporal data dependencies and
redundant accesses presents a formidable challenge to the efficient
execution of DGNN inference on modern hardware architectures.

2.3 Our Insights
Figure 3 presents the outcomes of statistical analyses conducted on
DGNN models. From these studies, we derive two critical insights

240

TaGNN: An Efficient Topology-aware Accelerator for High-performance Dynamic Graph Neural Network SC ’25, November 16–21, 2025, St Louis, MO, USA

concerning DGNN inference, which offer avenues to overcome the
constraints posed by current architectures and to improve inference
performance significantly.

Insight One. In real-world dynamic graphs, the substantial over-
laps in features and topology across multiple snapshots present a
significant opportunity to enhance the throughput and data paral-
lelism of DGNN inference through concurrent processing of these
snapshots. Figure 3 (a) demonstrates that unaffected vertices across
three and four snapshots account for an average of 27.3%-45.3%
and 10.6%-24.4% of all vertices, respectively, across various real-
world dynamic graphs. This indicates that only a small subset of
vertices is affected by graph updates, underscoring the potential for
concurrent processing to improve DGNN inference performance.
This highlights the advantages of leveraging overlaps across snap-
shots to reduce redundant memory footprint. Additionally, our
findings reveal that processing three snapshots in a single batch is,
on average, approximately 1.6x faster than sequential processing.

Insight Two. In the RNN module of DGNN inference, the similar-
ity of the final cell-update features across two consecutive snapshots
correlates positively with the similarity of output features from the
GNN module. Our correlation analysis indicates a strong stability in
DGNN inference, as shown in Figure 3 (b), which illustrates the rela-
tionship among output feature differences, final feature similarities,
and model accuracy. The output feature difference Δ is computed
by measuring the cosine similarity [18] between the output features
of the same vertex across consecutive snapshots. As depicted in
Figure 3 (b), increasing Δ from -0.6 to 0.6 increases output feature
similarity from 35.2% to 73.3%. This positive correlation highlights
the stability of the RNN module, where similar output features
correspond to similar final features across snapshots. However,
traditional approximation methods neglect the influence of graph
structure on vertex features, directly applying these methods to
DGNNs may result in the loss of critical structural information,
adversely affecting the model accuracy. For instance, Figure 3 (b)
demonstrates that the T-GCN model achieves an accuracy below
54.3% on the FK dataset (compared to the baseline accuracy-58.4%),
even when Δ is set to 0.8.

3 Overview of Our Approach
Leveraging these two insights, we propose a topology-aware con-
current execution approach to support multi-snapshot DGNN in-
ference, enhancing data parallelism while significantly reducing
redundant memory usage and alleviating temporal data depen-
dencies. This section presents our main ideas and discusses the
limitations of software-only implementations.

3.1 Topology-aware Concurrent Execution
In this subsection, we present the core concept of our topology-
aware concurrent execution approach, which efficiently identifies
the affected subgraph and unaffected vertices across multiple snap-
shots (i.e., sliding windows ≥ 2). It facilitates the concurrent com-
putation of multiple snapshots, thereby enhancing the throughput
of DGNN inference. In our approach, the vertices are classified
into three categories: unaffected vertices, stable vertices (i.e., a ver-
tex whose feature remains unchanged across multiple consecutive
snapshots while its neighbors change), and affected vertices. In other
words, the set of unaffected vertices is a subset of the stable vertices.

v1

Snapshot t-1

Input feature

v2

v0

v3

v4

v5

v6

Snapshot t

v1

v2

v0

v3

v4

v5

v6

Snapshot t+1

v1

v2

v0

v3

v4

v5

v6

Sliding window=3

(a) Initial multiple snapshots

(b) Topology-aware access and computation

Snapshot t-1,t,and t+1

v1

v2

v0

v3

v4

v5

v6 Affected

subgraph

AV

UV

Memory accesses 14 times

UV

Affected

subgraph

Snapshot t-1

v1 v2v0 v3

v4 v5 v6 Snapshot t

Snapshot t+1v4 v5 v6

v4 v5 v6

SV

UV: Unaffected Vertex AV: Affected Vertex SV: Stabled Vertex

(c) The O-CSR format representation for the affected subgraph

Sindex

Tindex

Timestamp

Feature

v4

v5 v6v7

v7

v7

Affected subgraph

4 5 6

(t-1,t)

tt+1

5 6 5 136 6 5

t-1 t-1 t t+1 t t+1

Xt-1(v4)Xt-1(v5)Xt-1(v6) ... Xt+1(v7)

The total number

of vertices 7 4

Enum 4 1 0 1

Figure 4: An example to explain our approach

Topology-aware Concurrent Processing. To effectively cap-
ture overlapping characteristics across multiple snapshots, our ap-
proach first tracks the dependencies between stable vertices1 and
their neighbors based on the topology of each snapshot. These
stable vertices are designated as roots to concurrently prefetch
affected vertices on the fly along their respective graph topolo-
gies using a Depth-First Search (DFS) strategy [23] for better data
locality, leveraging previously tracked information. This method
efficiently delineates the boundaries of the affected subgraph while
concurrently identifying unaffected vertices.

Specifically, our approach begins by categorizing vertices across
multiple snapshots based on the mutability of their features and
topological information. Vertices with unchanged features are clas-
sified as stable vertices, which are further designated as affected
or unaffected based on the variability of their topological infor-
mation across snapshots. Subsequently, the stable vertices serve
as roots for a concurrent DFS traversal to retrieve other vertices
and capture the affected subgraph. For each neighbor of the root
vertex, our approach determines its categorization by meticulously
examining whether its features or topological information have
undergone changes across the snapshots. If a neighbor is identi-
fied as an affected vertex, it is seamlessly incorporated into the
affected subgraph, and the graph traversal proceeds recursively
from that neighbor. This process persists until all reachable vertices
from the stable vertices have been thoroughly explored, ensuring a
comprehensive identification of the affected subgraph.

We illustrate the above process using the example in Figure 4
(b). Initially, vertices 𝑣0, 𝑣1, 𝑣2, and 𝑣3 are identified as unaffected
vertices due to their unchanged features, neighbors and neigh-
bors’features across the three snapshots. Vertex 𝑣4 is classified as a
stable vertex, while vertices 𝑣5, 𝑣6, and 𝑣7 are recognized as affected
vertices. Subsequently, vertex 𝑣4 serves as the root for a concurrent
DFS based on the graph topology of snapshots 𝑡 − 1, 𝑡 , and 𝑡 + 1,
thereby obtaining the affected subgraph, which includes vertices
𝑣4, 𝑣5, 𝑣6, and 𝑣7 along with their topology and feature information.

Dynamic Graph Representation for Affected Subgraph.
To facilitate the concurrent computation and enhance data local-
ity of affected subgraphs across multiple snapshots, we introduce
a cache-friendly dynamic graph representation, termed Overlap-
aware Compressed Sparse Row (O-CSR). As depicted in Figure 4 (c),

1Stable vertices are analogous to cut vertices in a graph, allowing for the segmentation
of affected and unaffected subgraphs across multiple snapshots.

241

SC ’25, November 16–21, 2025, St Louis, MO, USA Hui Yu et al.

the O-CSR consists of four arrays: Sindex, which denotes the source
vertex IDs of each outgoing edge within the affected subgraph
and includes an additional entry for the total number of vertices;
Tindex, representing the target vertex IDs corresponding to these
source vertices in the respective snapshots; Timestamp, indicating
the snapshot ID of each target vertex; Enum, specifies the number
of edges for each source vertex across multiple snapshots; and Fea-
ture, which stores the features of these vertices across all snapshots.
Note that O-CSR stores the feature of stable vertices only once.

The total space complexity of O-CSR is 𝑜 (2|𝐸𝑠 | + (𝐾 ∗𝐷 + 2) |𝑉𝑠 |),
where |𝐸𝑠 |, |𝑉𝑠 |, 𝐾 , and 𝐷 represent the number of edges, vertices,
snapshots, and the size of feature dimension in the affected sub-
graph, respectively. The O-CSR data structure efficiently accommo-
dates dynamic changes, such as inserting, updating, and deleting
edges and vertices, by adjusting the appropriate entries in the in-
dices and timestamp arrays.We illustrate howO-CSR stores affected
vertices using the example from Figure 4 (c). For the stable vertex
𝑣4, it has neighbors 𝑣5 and 𝑣6 at 𝑡 − 1, 𝑣5 at 𝑡 , and 𝑣6 at 𝑡 + 1. In
O-CSR, this is represented as follows: Sindex[0] = 4, Tindex[0:3]
= [5, 6, 5, 6], Timestamp[0:3] = [t-1, t-1, t, t+1], Enum[0] = 4, and
Feature[0:4] = [𝑋𝑡−1 (𝑣4), 𝑋𝑡−1 (𝑣5), 𝑋𝑡−1 (𝑣6), 𝑋𝑡 (𝑣5), 𝑋𝑡+1 (𝑣6)].

By leveraging the O-CSR format, our approach efficiently re-
trieves the neighbor IDs and features for each source vertex across
all snapshots in a continuous manner, facilitating fast and cache-
friendly access to the necessary data. The sequential storage layout
of target vertex IDs and features within the O-CSR structure en-
sures that the data required for computing the affected subgraph is
stored contiguously, thereby minimizing cache misses and reducing
off-chip memory access latency. Furthermore, the O-CSR represen-
tation enables concurrent computation of the affected subgraph
across multiple snapshots by organizing data in a snapshot-wise
manner and utilizing the Timestamp array to identify the snapshot
ID of each target vertex, enhancing DGNN inference efficiency.

Similarity-aware Cell Skipping. To alleviate temporal data
dependencies and minimize unnecessary computations in the cell-
update phase of DGNN inference, we propose an efficient similarity-
aware cell skipping strategy. It introduces a similarity score 𝜃 to
quantify the consistency between two feature vectors (i.e., the out-
put features of the same vertex after the GNN operation across two
consecutive snapshots). The similarity score 𝜃 is defined as follow:

𝜃 (𝑍 𝑡 (𝑣), 𝑍 𝑡+1 (𝑣)) = (𝑍 𝑡 (𝑣) ⊙ 𝑍 𝑡+1 (𝑣)
∥𝑍 𝑡 (𝑣)∥ ×

𝑍 𝑡+1 (𝑣)

)× |N𝑠𝑣 (𝑣) |
|N𝑡 (𝑣) ∩ N (𝑡+1) (𝑣) |

where Z𝑡 (𝑣) and Z𝑡+1 (𝑣) denote the output features of vertex 𝑣
at snapshots 𝑡 and 𝑡 + 1 after GNN operation, respectively, N𝑡 (𝑣)
andN (𝑡+1) (𝑣) represent the neighbors of 𝑣 at snapshots 𝑡 and 𝑡 + 1,
respectively. N𝑠𝑣 (𝑣) denotes the set of stable vertices among the
common neighbors of 𝑣 across snapshots 𝑡 and 𝑡 + 1.

The similarity score 𝜃 integrates three key factors: the cosine sim-
ilarity between vertex features, which quantifies the dissimilarity
between the features of a vertex across two consecutive snapshots;
the overlap ratio of neighboring vertices, reflecting topological con-
sistency by measuring the proportion of shared neighbors between
snapshots; and the proportion of stable vertices among common
neighbors, indicating the stability of the local graph structure by
assessing how many common neighbors remain stable over time.

Off-chip

HBM

Timestamp

Data

Weight Matrix

Graph

Structure

Vertex

Feature

Off-chip HBM

. . .

1

6 ARU

Control Unit

Structure
Memory

Multiple Snapshot Data Loader

Feature
Memory

T
a

sk
 F

IF
O

DCU

PR

DCU DCU

PR PR

SCU

CU

Output Buffer

DGNN Computation Unit

O-CSR Table

2

3

5

-1

...

Cell-update

Data

4

DCU: DGNN Calculation Unit PR: Private Register

CU: Condense Unit

AU: Activation Unit

: Control Flow : Data Flow

Task Dispatcher

SCU : Similarity Computation Unit

AU
4 5

t-1

...

...

t

-1

-1

5,6 6

-1

X(v4) X(v5)

-1

...

...

1

2 1
... -1

Intermediate

Buffer

ARU: Adaptive RNN Unit

 Figure 5: TaGNN hardware architecture

By combining these factors, the similarity score provides a com-
prehensive measure of vertex consistency across two consecutive
snapshots, ranging from -1 to 1. A higher similarity score signifies
greater consistency, whereas a lower score indicates substantial
changes in the vertex’s features and local topology.

Based on the similarity score 𝜃 , the cell skipping strategy works
as follows. For each stable and affected vertex 𝑣 , it computes𝜃

(
Z𝑡 (𝑣) ,

Z𝑡+1 (𝑣)
)
across snapshots 𝑡 and 𝑡 + 1. It establishes two thresholds,

𝜃𝑠 and 𝜃𝑒 to guide the cell-update operation. If the similarity score
exceeds 𝜃𝑒 , it classifies the vertex as highly consistent and skip the
cell-update operation entirely, reusing the final feature from the
previous snapshot. If the similarity score falls between 𝜃𝑠 and 𝜃𝑒 , it
performs a partial cell-update by computing the vector difference
Δ [11] between the output features and adding it to the final feature
from the previous snapshot. If the similarity score is below 𝜃𝑠 , it
executes the normal cell-update operation of the RNN module to
produce the final features.

3.2 Benefits of Customization
Our topology-aware concurrent execution approach significantly
enhances performance on general-purpose processors, as illustrated
in Figure 8 (a). However, several factors may constrain the full po-
tential of this approach. First, the need to dynamically capture
the affected subgraph through simultaneous and irregular traver-
sal of multiple graphs poses a challenge, as the graph structure of
DGNN is not only sparse but also varies dynamically. Second, the
extensive set operations involved in similarity score computation
introduce additional computational instructions and suffer from
low levels of instruction-level parallelism due to data-dependent
branches. Furthermore, the adaptive selection of the cell-update
computation model based on similarity scores is not well-suited for
general-purpose processors; frequent switching between different
computation models can lead to pipeline stalls and degraded cache
performance. Given these challenges, it is prudent to consider the
development of a bespoke accelerator specifically designed for the
efficient execution of DGNN inference. By integrating specialized
hardware components and optimizedmemory hierarchies that align
with our topology-aware concurrent execution approach, such an
accelerator could substantially enhance the performance and effi-
ciency of DGNN inference, thereby unlocking its full potential.

242

TaGNN: An Efficient Topology-aware Accelerator for High-performance Dynamic Graph Neural Network SC ’25, November 16–21, 2025, St Louis, MO, USA

Fetch_

Vertex

Fetch_

Snapshot

Fetch_

Offsets

Fetch_

Neighbors

AS0AS FIFO

AS2

AS5

Fetch_

Root

Fetch_

Neighbors

1

2

3

4

5

Identify_

Vertices

Type bitmapNeighbor IDs Snapshot IDs

Multiple

Snapshots Data

O-CSR Table Task Buffer

{11,v0, v1, v3, X(v0), X(v1), X(v3),t-1}

{01,v4,v5, v6, X(v4),X(v5),X(v6),t-1}

{Vertex Type, Source ID, Target IDs,

Source Feature, Target Features, Timestamp}

Source ID v4

Target ID

Timestamp

v5,v6

t-1

v5

t

...

...

...

vi

vj

t+1

v6

Feature X(v4), X(v5) X(v5) ... X(vi)

-1

-1

-1

-1

Fetch_

Features

Neighbor_

Selection

Offsets_

Fetching

Type_

Detection

Vertex ID

Enum 2 1 ... k -1

D0

D1

D2

Stack

 GSPM

Figure 6: Microarchitecture of MSDL unit
4 TaGNN Overview
In this section, we introduce the topology-aware accelerator, TaGNN,
designed to maximize the performance of our approach. TaGNN
comprises several hardware units, including the Multiple Snapshots
Data Loader, Task Dispatcher, DGNN Computation Unit, Adaptive
RNN Unit, and various on-chip buffers, as illustrated in Figure 5.
These components collaborate to efficiently implement topology-
aware concurrent execution for DGNN inference.

Multiple Snapshots Data Loader (MSDL) divides all snap-
shots into multiple batches, each containing a predefined number
of snapshots. DGNN inference begins with the Graph Snapshot Par-
tition Module (GSPM), which retrieves a partition from the current
batch. Note that GSPM can support various partitioning strate-
gies [5, 45]. For each retrieved partition, the required data (i.e.,
𝐷0) are stored in a stack (1). MSDL utilizes multiple data load-
ing hardware pipelines to identify and prioritize the loading of
unaffected vertices while capturing the affected subgraph across
multiple snapshots (2). Subsequently, the affected subgraph data
are stored in the O-CSR table, enabling rapid traversal and retrieval
of vertex, feature, and timestamp information by organizing the
affected subgraph in a compact format. Leveraging the O-CSR table,
TaGNN assembles these data and orchestrates them into discrete
computing tasks, which are sequentially streamed into the Task
FIFO. Each entry comprises six elements: Vertex Type, the Source ID,
Target IDs, Source Feature, Target Features, and Timestamp (3).

Task Dispatcher is activated when the Task FIFO is not empty
and retrieves information from the FIFO to generate fine-grained
computation tasks for each vertex across multiple snapshots. The
Task Dispatcher assigns tasks to idle computing units through
evenly divides the vertices within each batch based on the number
of neighbors associated with them (4). This approach maximizes
the utilization of computation units and minimizes idle time by
maintaining a steady supply of tasks.

DGNN Computation Unit is a specialized processing element
engineered to efficiently execute the hybrid computations required
for the aggregation and combination phases of DGNN inference.
Each DGNN Calculation Unit (DCU) comprises two types of com-
putational components: the Combination Processing Element (CPE)
and the Aggregation Processing Element (APE). The CPE employs
row-wise matrix multiplication to effectively facilitate the com-
bination operation, while the APE is tasked with performing the
aggregation operation. The partial sum (Psum) generated by the
CPE can be stored in the Private Register (PR) of the DCU to enhance

the efficiency of regular matrix computations. Subsequently, the
aggregation results from the APE are transferred to the Adaptive
RNN Unit to derive the final features of each vertex (5). Note that
the computational units are designed to be flexible and configurable,
enabling them to adapt to various DGNN models.

Adaptive RNN Unit comprises three integral components: the
Similarity Core Unit, the Condense Unit, and the Activation Unit.
These modules collaboratively manage and efficiently support cell-
update and activation operations based on the similarity scores of
vertices across multiple snapshots. The Similarity Core Unit (SCU)
computes the similarity scores for each stable and affected vertex
by utilizing their output features from the GNN module across two
consecutive snapshots. Subsequently, the appropriate cell-update
computation mode is selected by comparing the similarity score
against two threshold values (i.e., 𝜃𝑠 and 𝜃𝑒). For vertices with
similarity scores that fall between 𝜃𝑠 and 𝜃𝑒 , the Delta Generation
module calculates the delta values representing the differences in
these vertices’ features between the current and previous snap-
shots. Condense Unit then condenses these delta values into a dense
representation to facilitate efficient computation in the subsequent
DGNN Computation Unit. The Activation Unit supports the nec-
essary nonlinear transformations or activation functions to the
processed data. Upon completion of these computations, the result-
ing output is conveyed to the output buffer for either immediate
retrieval or eventual write-back to off-chip memory (6).

On-chip Buffers consist of several components, including the
Structure Memory buffer, Feature Memory buffer, Weight Matrix
buffer, and Output Buffer. These buffers are employed to cache
various types of data (e.g., vertex structure, vertex features, weight
matrices, and output results) to enhance data reuse and minimize
unnecessary off-chip communications. Notably, TaGNN employs
ping-pong buffering technology [6] to decouple different operations
across all buffers, thereby mitigating access latency.

4.1 Overlap-aware Data Loading
To efficiently classify vertices and capture affected subgraphs across
multiple snapshots, as illustrated in Figure 6, the MSDL employs a
meticulously designed 6-stage pipeline comprising the following
stages: Fetch_Vertex, Fetch_Snapshot, Fetch_Offsets, Fetch_Neighbors,
Fetch_Features, and Identify_Vertices (1). Upon the arrival of a
new graph snapshot partition, the Fetch_Vertex stage initiates the
pipeline by randomly selecting a vertex (e.g., 𝑣𝑖 at snapshot 𝑡 − 1)
from the Structure Buffer. Once a vertex is selected, it is flagged as
visited to eliminate redundancy in subsequent processing stages.
For each selected vertex, the Fetch_Snapshot stage checks for the
presence of the vertex ID in the snapshots to be processed (i.e.,
snapshots 𝑡 , 𝑡 +1, and 𝑡 +2). If the vertex ID is absent in any of these
snapshots, it is immediately classified as an affected vertex, as its
absence signifies a structural change in the graph across the snap-
shots. Subsequently, the Fetch_Offsets stage retrieves the starting
and ending offsets of 𝑣𝑖 within the relevant snapshots by leveraging
the Vertex_Offset array in the CSR format. The Fetch_Neighbors
stage retrieves the neighboring vertices of 𝑣𝑖 from the respective
snapshots. Following this, the Fetch_Features stage acquires the in-
put features associated with the selected vertex 𝑣𝑖 and its neighbors
across the relevant snapshots. Finally, the Identify_Vertices stage

243

SC ’25, November 16–21, 2025, St Louis, MO, USA Hui Yu et al.

Weight Matrix Buffer

hA0

CPE00 CPE01 CPE0k

CPE10 CPE11 CPE1k

CPEm0 CPEm1 CPEmk

APE01

hA1 hAm
... w00 w01 w0k

Psum

...

...

hB0hB1 hBm
...

Feature

wm0 wm1 wmk
hn0 hn1 hnm

...

(a)

...

APE02

APEm0

...

...

Feature APE
Psum(i)

W
Feature

P
su

m
(i

+
1
)

CPE

To ARU

Condense Unit

ht

St-1

St

U

W

+
σ
tanh

σ
σ

+.
.
.

tanh
ht-1

Zt(v)

Zt+1 (v)
Similarity

Core Unit

SCU

Cmp.

Normal model

Skipping model

Approximate model

MUX

Condense Unit
Delta

Generation

Adaptive RNN Unit

(b)

Zk

From Delta
Generation

Delta FIFO

Cmp.

Cmp.

Cmp.

Mask

Generation

Add1

Add2

Add3

Add4
Dense

Buffer

Enable

Figure 7: Microarchitecture of TaGNN ; (a) the detail of DGNN
Computation Unit; (b) the detail of Condense Unit

performs the critical task of classifying vertices based on their struc-
tural and feature-level changes across the snapshots. This stage
considers factors such as the consistency of vertex IDs, variations
in features, and modifications in the local graph structure. By com-
paring these attributes across the snapshots, the Identify_Vertices
stage accurately categorizes each vertex as either a stable vertex, an
unaffected vertex, or an affected vertex. Note that TaGNN replicates
the Fetch_Neighbors and Fetch_Features units and parallelizes their
data accesses to balance the pipeline design.

The collected data of stable vertices, now structured in the for-
mat Vertex ID, Neighbor IDs, Snapshot IDs, Vertex Bitmap, is ef-
ficiently streamed into the Affected Subgraph FIFO (AS FIFO) to
expedite the identification of the affected subgraph, thereby optimiz-
ing the subsequent computational phases of the DGNN computing
pipeline (2). Note that the identified unaffected vertices are di-
rectly used by TaGNN to generate computational tasks. Upon the
insertion of an entry into the AS FIFO buffer by the Identify_Vertices
stage, MSDL commences its efficient detection of the affected sub-
graph by employing a meticulously designed five-stage pipeline
(3). Each stage of this pipeline is orchestrated by a Traversal
Finite State Machine (TFSM) and encompasses the following steps:
Fetch_Root, Fetch_Neighbors, Type_Detection, Offsets_Fetching, and
Neighbors_Selection.

The Fetch_Root stage initiates the pipeline by extracting an ele-
ment (e.g., AS_0) from the AS FIFO, which serves as the basis for
subsequent stages. In the Fetch_Neighbors stage, the neighbor IDs
of the root vertex are retrieved from the FIFO, facilitating efficient
exploration of the local graph structure. During the Type_Detection
stage, the pipeline classifies each neighbor vertex by examining the
corresponding type bitmap, enabling accurate categorization based
on structural and temporal characteristics. The Offsets_Fetching
stage then retrieves the offsets of the identified affected neighbors
from graph structure memory, serving as critical pointers for lo-
cating relevant information associated with these vertices. In the
Neighbors_Selection stage, the affected neighbors, along with their
offsets and type information, undergo a refined selection process,
ensuring that only pertinent stable and affected vertices are consid-
ered for further processing. Upon completion of neighbor selection,
MSDL updates the O-CSR table with details of the selected affected
vertices, including source ID, target ID, timestamp, and features
(4). To reduce redundant memory footprint, TaGNN stores the
features of stable and unaffected vertices only once across snap-
shots. Using the O-CSR table, TaGNN generates computation tasks

Table 3: Resource utilization of TaGNN on U280 FPGA

Resource CD-GCN GC-LSTM T-GCN
DSP 77.2% 80.2% 73.6%
LUT 42.6% 49.5% 40.1%
FF 34.9% 35.2% 30.4%

BRAM 62.4% 69.7% 59.3%
UltraRAM 82.4% 89.7% 80.3%

and populates the Task FIFO (5) efficiently by leveraging informa-
tion from the O-CSR table and MSDL. Notably, unaffected vertices
are directly processed as computation tasks by the Task Dispatcher.

4.2 Adaptive Data Similarity Computation
When the Task FIFO buffer is not empty, the Task Dispatcher assigns
computation tasks to the DGNN Computation Unit. As depicted in
Figure 7 (a), each DCU features two specialized types of processing
elements to facilitate the aggregation and combination operations
required for DGNN inference: the CPEs and APEs. Specifically,
CPEs consist of an array of multiply-and-accumulate (MAC) units,
responsible for executing row-wise matrix multiplication to update
features, while APEs are designed for efficient vertex aggregation,
employing a parallel adder tree structure to expedite the GNN
module’s aggregation process. The output features of each vertex
(e.g., 𝑍 𝑡 (𝑣) and 𝑍 𝑡+1 (𝑣)) across two consecutive snapshots are then
transferred to the Adaptive RNN Unit to complete the RNN module
computation and produce the final features.

To alleviate temporal data dependencies between snapshots dur-
ing DGNN inference, TaGNN integrates Adaptive RNN Unit to elim-
inate unnecessary cell-update computations. As illustrated in Fig-
ure 7 (b), the SCU calculates similarity scores for affected and stable
vertices. The SCU consists of multiple Similarity Core Units (SCUs),
each designed to efficiently perform the similarity analysis compu-
tations. These units operate in parallel, with each one calculating
the cosine similarity between the feature vectors of the target vertex
and its corresponding neighbors or associated vertices. To achieve
this, the SCU employs a multi-stage pipeline architecture, where
each stage processes the input data through a series of specialized
hardware components. The first stage consists of vector multiplica-
tion units that compute the dot product between the feature vectors
of the vertices. In the second stage, these dot products are then
passed through normalization units to compute the cosine similar-
ity by dividing the dot product by the product of the norms of the
individual vectors. In parallel, topological overlap stages calculate
the intersection of neighboring vertices in the graph, providing a
measure of how well the target vertex overlaps with its neighbors
in terms of graph structure. Finally, the stability weighting stages
adjust the similarity scores based on the stability of the vertices
across consecutive snapshots, ensuring that the impact of stable
vertices is appropriately factored into the computation.

For stable vertices, the SCU bypasses the vector difference com-
putation to further reducing computational latency, as their feature
vectors remain unchanged across consecutive snapshots. Subse-
quently, Adaptive RNN Unit compares these scores against prede-
fined thresholds 𝜃𝑠 and 𝜃𝑒 to determine the appropriate cell-update
computation mode. In normal mode, standard RNN computation
is performed using the complete vertex features from the current

244

TaGNN: An Efficient Topology-aware Accelerator for High-performance Dynamic Graph Neural Network SC ’25, November 16–21, 2025, St Louis, MO, USA

(a) Execution time normalized to that of DGL-CPU

with sliding window is set to 4 on T-GCN model
(b) Computation time normalized to that of DGL-CPU

with sliding window is set to 4 on T-GCN model

D
G

L
-C

P
U

P
iP

A
D

T
aG

N
N

-S

D
G

L
-C

P
U

P
iP

A
D

T
aG

N
N

-S

D
G

L
-C

P
U

P
iP

A
D

T
aG

N
N

-S

D
G

L
-C

P
U

P
iP

A
D

T
aG

N
N

-S

D
G

L
-C

P
U

P
iP

A
D

T
aG

N
N

-S

0.0

0.2

0.4

0.6

0.8

1.0

E
x
ec

u
ti

o
n
 t

im
e

Memory access time Computation time Runtime overhead

EP FKHP GT ML D
G

L
-C

P
U

P
iP

A
D

T
aG

N
N

-S

D
G

L
-C

P
U

P
iP

A
D

T
aG

N
N

-S

D
G

L
-C

P
U

P
iP

A
D

T
aG

N
N

-S

D
G

L
-C

P
U

P
iP

A
D

T
aG

N
N

-S

D
G

L
-C

P
U

P
iP

A
D

T
aG

N
N

-S

0.0

0.2

0.4

0.6

0.8

1.0

M
em

o
ry

 a
cc

es
s

ti
m

e

Redundant data access Unnecessary data access Useful data access

EP FKHP GT ML

 Figure 8: Performance of TaGNN -S against different software systems over different datasets
Table 4: System configurations of compared accelerator

DGNN-Booster [7] E-DGCN [46] Cambricon-DG [40] TaGNN

Compute 280 MHz @ 4,096 MACs 1 GHz @ 4,096 MACs,
where it has 8 × 8 PEs, each PE has 4 × 4 adders

1 GHz @ 4,096 MACs,
where it has 1 DU, 32 TUs, and 32 SUs

280 MHz @ 4,096 MACs,
where it has 16 DCUs and 8 SCUs, each DCU has 256 CPEs and 128 APEs

On-chip Memory 5 MB 12 MB 4 MB 2 MB (Feature Memory), 256 KB (Task FIFO), 128 KB (Intermediate Buffer)
1 MB (O-CSR Table), 512 KB (Structure Memory), 128 KB (Output Buffer)

Off-chip Memory 256 GB/s HBM 2.0 256 GB/s HBM 2.0 256 GB/s HBM 2.0 256 GB/s HBM 2.0

HP GT ML EP FK HP GT ML EP FK HP GT ML EP FK AVG

CD-GCN

100

101

S
p
ee

d
u
p

DGL-CPU PiPAD TaGNN-S TaGNN

102

T-GCN

103

GC-LSTM

Figure 9: Comparative performance of normalized to that of DGL-CPU

HP GT ML EP FK HP GT ML EP FK HP GT ML EP FK AVG
0
2
4
6
8

10
12
14
16

CD-GCN

S
p
ee

d
u
p

DGNN-Booster E-DGCN Cambricon-DG TaGNN

T-GCNGC-LSTM Figure 10: Performance of different schemes normalized to that of DGNN-Booster

snapshot, with theDGNN Computation Unit executing conventional
RNN cell-update operations to accurately capture temporal depen-
dencies. For vertices with similarity scores exceeding 𝜃𝑒 , a skipping
mode is activated, bypassing RNN computation and directly reusing
the final features from the previous snapshot. This approach sig-
nificantly reduces computational overhead for vertices exhibiting
high consistency across snapshots. In similarity computation mode,
triggered when scores fall between 𝜃𝑠 and 𝜃𝑒 , the Delta Generation
module calculates the differences (Δ) between the output features
of consecutive snapshots. However, because both feature and topo-
logical similarities are considered in the similarity score calculation,
the resulting delta values often contain numerous zero elements,
reflecting unchanged components.

To efficiently eliminate these zero values, the Condense Unit em-
ploys a multi-level parallel zero-value filtering mechanism. The
Mask Generation Unit creates a mask for each vertex’s delta val-
ues, identifying non-zero elements. These masks, along with the
corresponding vertex IDs, are used to generate addresses stored

in the Address Register, ensuring proper alignment and retrieval of
final results. The non-zero delta values are then stored in the Dense
Buffer, serving as a compact representation of relevant information.
The DGNN Computation Unit performs cell-update calculations for
these non-zero delta values. Finally, the computed results from the
DGNN Computation Unit are combined with the corresponding
vertex’s cell-update values from the previous snapshot (stored in
the Intermediate buffer) to produce the final output features. Impor-
tantly, the state values 𝑆𝑡−1 from the previous snapshot are also
updated through this process, ensuring consistency and accuracy
across multiple snapshots during DGNN inference. To preserve the
fidelity of inference results and mitigate error accumulation from
prolonged skipping, TaGNN recalculates similarity scores for each
vertex in the new batch, rather than reusing scores and skipping
decisions from the previous batch. This approach ensures robust
and precise computation over time.

245

SC ’25, November 16–21, 2025, St Louis, MO, USA Hui Yu et al.

5 Experimental Evaluation
5.1 Experimental Setup
TaGNN Setting.We implemente TaGNN on a Xilinx Alveo U280
FPGA accelerator card, which features a XCU280 FPGA chip equipped
with 1.08 million LUTs, 4.5 MB of on-chip BRAM, 30 MB of on-chip
UltraRAM, 9,024 DSP slices, and two 4 GB HBM2 stacks, providing
a total memory bandwidth of 460 GB/s. To determine the clock rate
for TaGNN, we employ Xilinx Vivado 2019.1 and conservatively set
the operating frequency to 225 MHz for our experiments.

Benchmarks and Dynamic Datasets. Table 2 summarizes five
real-world datasets for DGNN research [26, 40] used in the evalu-
ation, i.e., HepPh (HP), Gdelt (GT), MovieLens (ML), Epinions (EP),
and Flicker (FK). We evaluate TaGNN using three widely recog-
nized DGNNmodels: CD-GCN [21], GC-LSTM [8], and T-GCN [45].
These models are configured with four, three, and two layers, re-
spectively [8, 15, 20, 21, 45]. The resource utilization of TaGNN
across all evaluated models is presented in Table 3.

Baselines andEvaluationMetrics.The performance of TaGNN
is compared with five solutions, i.e., DGL-CPU (v2.4.0) [32], Pi-
PAD [31], DGNN-Booster [7], E-DGCN [46], and Cambricon-DG [40].
DGL-CPU is the best-performing solution on the CPU platform,
and PiPAD is the state-of-the-art framework for DGNN on GPU.
In our experiments, DGL-CPU is running on the Intel Xeon 6151
processor with 65 cores at 3.0 GHz and 696 GB DRAM. PiPAD runs
on the NVIDIA Tesla A100 GPU with 6,912 cores and 80 GB HBM.
DGNN-Booster, E-DGCN, and Cambricon-DG, are the cutting-edge
hardware DGNN accelerators. The configurations of these baseline
accelerators and our TaGNN are listed in Table 4. Intel Product Spec-
ifications [2] are used to estimate the CPU energy consumption.
The GPU energy is obtained by NVIDIA System Management Inter-
face (nvidia-smi) [1]. Note that, to evaluate our software approach,
we have also modified DGL to use our topology-aware concurrent
execution approach to support DGNN inference, and this software
implementation is called TaGNN-S. Note that TaGNN-S runs on
the above A100 GPU in the following experiments and the default
number of snapshots of a batch is set to 4 in our approach.

5.2 Experimental Results
Comparison with Software Systems. Figure 8 (a) presents the
normalized execution time of various solutions, with the time de-
composed into memory access time, computation time, and runtime
overhead. The results demonstrate that the overall performance of
TaGNN -S surpasses PiPAD, primarily because PiPAD incurs sig-
nificantly higher data access time and lower data parallelism than
TaGNN -S. Specifically, the memory access time of PiPAD is 2.7x
to 4.1x greater than that of TaGNN -S across the tested instances.
This disparity arises from PiPAD’s requirement to transmit the
features of all vertices, even when the features of most vertices
remain identical across the four snapshots.

Figure 8 (b) provides a detailed breakdown of the memory ac-
cess time from Figure 8 (a). The results indicate that TaGNN -S
reduces redundant access time by 21.2%-47.5% and unnecessary
computation time by 14.2%-22.2% for the T-GCN model. This im-
provement is attributed to TaGNN -S’s capability to minimize the
access frequency of unaffected and stable vertices across the four

Table 5: Accuracy comparison of TaGNN against TaGNN with
other cutting-edge RNN approximation methods, including
DeltaRNN [11] (i.e., TaGNN -DR), ALSTM [14] (i.e., TaGNN -
AM), and ATLAS [17] (i.e., TaGNN -AS)

Models Methods Accuracy (%)
HepPh Gdelt MovieLens Epinions Flicker

CD-GCN

Baseline 75.3±0.8 78.2±0.4 80.4±1.1 70.2±0.8 61.4±1.2
TaGNN -DR 61.2±0.4 62.4±0.8 60.5±0.7 55.4±2.5 43.4±2.8
TaGNN -AM 63.4±0.5 61.4±0.2 61.2±2.1 54.2±1.3 40.3±1.8
TaGNN -AS 70.0±0.7 72.3±1.0 65.4±1.2 60.1±1.8 53.4±0.5

TaGNN (Ours) 74.9±0.6 78.1±0.4 80.1±0.9 69.6±0.5 60.8±0.8
TaGNN loss accuracy 0.1% ∼ 0.8%

GC-LSTM

Baseline 89.5±0.4 80.5±0.9 91.2±0.4 87.3±0.4 72.4±1.2
TaGNN -DR 73.4±0.5 72.8±1.1 72.5±0.8 61.6±1.5 59.8±1.8
TaGNN -AM 74.8±1.2 74.4±0.9 77.3±0.5 67.1±2.8 64.3±1.2
TaGNN -AS 80.0±0.6 71.5±1.1 80.2±1.4 77.2±2.1 63.5±1.9

TaGNN (Ours) 88.7±0.5 79.9±0.9 90.4±0.5 86.5±0.4 71.9±1.1
TaGNN loss accuracy 0.5% ∼ 0.8%

T-GCN

Baseline 75.3±0.5 81.4±0.2 75.6±0.7 85.2±0.5 58.4±1.2
TaGNN -DR 59.7±0.8 59.4±0.8 44.4±0.9 62.7±2.1 49.3±2.7
TaGNN -AM 68.4±0.2 72.5±0.2 61.5±0.4 63.8±1.4 50.4±1.5
TaGNN -AS 64.2±0.8 70.3±1.2 64.2±0.3 65.4±0.8 49.8±2.9

TaGNN (Ours) 74.6±0.8 80.9±0.2 74.8±0.5 84.9±0.2 57.8±0.6
TaGNN loss accuracy 0.2% ∼ 0.9%

snapshots to a single access, thereby significantly reducing un-
necessary off-chip communications and improving data locality.
Additionally, TaGNN -S alleviates temporal data dependencies and
minimizes redundant computations in the RNN module. However,
TaGNN -S only slightly outperforms PiPAD overall due to its high
runtime overhead. As shown in Figure 8 (a), the runtime overhead
accounts for 40.1%-62.3% of TaGNN -S’s total execution time. In con-
trast, TaGNN further enhances data locality through a customized
memory subsystem and significantly reduces the runtime overhead
inherent to TaGNN -S, resulting in a marked improvement in over-
all performance. As illustrated in Figure 9, TaGNN outperforms
DGL-CPU and PiPAD by 415.2x-612.6x (535.2x on average) and
62.8x-146.4x (84.3x on average), respectively.

Comparison with DGNN Accelerators. Figure 10 demon-
strates that TaGNN outperforms DGNN-Booster, E-DGCN, and
Cambricon-DG with average speedups of 13.5x, 10.2x, and 6.5x,
respectively. This performance advantage stems from TaGNN ’s
ability to reduce redundant and unnecessary memory accesses by
78.3%-84.6%, 69.2%-72.5%, and 52.1%-63.4% compared to DGNN-
Booster, E-DGCN, and Cambricon-DG, respectively. In comparison
to these accelerators, TaGNN effectively avoids redundant accesses
to unaffected and stable vertices across multiple snapshots, reduces
unnecessary RNN computations, and improves data parallelism.

Analysis of Energy Consumption. Figure 11 illustrates the
energy consumption of various solutions, showing that TaGNN
achieves energy reductions of 621.3x to 901.5x (averaging 742.6x)
and 88.9x to 135.2x (averaging 104.9x) compared to DGL-CPU and
PiPAD, respectively. Against existing hardware accelerators, includ-
ing DGNN-Booster, E-DGCN, and Cambricon-DG, TaGNN achieves
average energy savings of 15.9x, 11.7x, and 7.8x, respectively. These
substantial energy efficiency improvements are primarily attrib-
uted to TaGNN ’s multi-stage hardware pipeline and customized
memory subsystem, which effectively minimize redundant com-
binational logic along the critical path and reduce unnecessary
on-chip resource utilization.

5.3 DGNN Inference Accuracy Analysis
Table 5 provides a comparative analysis of the accuracy achieved by
TaGNN and its variants that incorporate state-of-the-art RNN ap-
proximation methods [11, 14, 17], namely TaGNN-DR, TaGNN-AM,

246

TaGNN: An Efficient Topology-aware Accelerator for High-performance Dynamic Graph Neural Network SC ’25, November 16–21, 2025, St Louis, MO, USA

HP GT ML EP FK HP GT ML EP FK HP GT ML EP FK AVG

CD-GCN

100

101

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

TaGNN Cambricon-DG E-DGCN DGNN-Booster PiPAD DGL-CPU

102

T-GCN

103

GC-LSTM
Figure 11: Energy consumption of different solutions normalized to that of TaGNN

HP GT ML EP FK HP GT ML EP FK HP GT ML EP FK AVG
0

1

2

3

4

5

6

N

o
rm

al
iz

ed

ex
ec

u
ti

o
n

 t
im

e

TaGNN WO/ OADL WO/ ADSC

CD-GCN GC-LSTM T-GCN
Figure 12: Performance breakdown of TaGNN

HP GT ML EP FK
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

al
iz

ed
 e

x
ec

u
ti

o
n

 t
im

e

TaGNN-CSR TaGNN-PMA TaGNN

HP GT ML EP FK HP GT ML EP FK HP GT ML EP FK
0

20

40

60

80

100

P
er

fo
rm

an
ce

 g
ai

n
 b

re
ak

d
o

w
n

CD-GCN

MSDL+DGNN Computation Unit Task Dispatcher Adaptive RNN Unit

GC-LSTM T-GCN

(a) (b) Figure 13: Performance studies of TaGNN on the T-GCN
model: (a) breakdown of architecture performance improve-
ment; (b) the execution time normalized to TaGNN -CSR

and TaGNN-AS, across various datasets and DGNN models. The
results reveal that TaGNN consistently delivers high accuracy with
minimal degradation compared to the baseline models. Specifically,
the accuracy drop for TaGNN ranges from 0.1% to 0.8% for CD-GCN,
0.5% to 0.8% for GC-LSTM, and 0.2% to 0.9% for T-GCN, underscor-
ing its ability to preserve model performance while significantly
improving inference efficiency. Importantly, this accuracy loss re-
mains within an acceptable range [8, 14, 20, 21, 24], validating the
effectiveness of our approach. Additionally, the similarity-aware
cell skipping strategy employed by TaGNN plays a pivotal role
in maintaining accuracy loss below 1%. By exploiting topological
and feature overlaps between consecutive snapshots, this strategy
reduces unnecessary computations and memory accesses, further
enhancing efficiency without compromising accuracy.

5.4 Effectiveness of TaGNN ’s Designs
Figure 12 delineates the advantages conferred by the TaGNN, which
encompasses our Overlap-aware Data Loading (OADL) mechanism
and the Adaptive Data Similarity Computation (ADSC) scheme.

OADL. Benefiting from the OADLmechanism, which can further
eliminate redundant data partition loading and the features of stable
vertices can also be reduced to once. Consequently, we discern that
OADL furnishes an average performance enhancement of 4.41x
compared to the version of TaGNN without OADL strategy (i.e.,
WO/ OADL), constituting 71.38% of the total performance gains
achieved by TaGNN.

ADSC. By applying the ADSC scheme, the similarity scores of
all vertices in two consecutive snapshots can be efficiently calcu-
lated, and the results can be quickly reused based on this score. This
enhancement translates to an average improvement in total execu-
tion time by a factor of 2.48x over the version of TaGNN without

0.0

0.2

0.4

0.6

0.8

1.0
 Performance

N
o
rm

al
iz

ed
 e

x
ec

u
ti

o
n
 t

im
e

(a) Values of qs, qe

[-0.1,0.9] [-0.3,0.7] [-0.5,0.5] [-0.9,0.1]
50

52

54

56

58

60
 Model accuracy

M
o
d

el
 a

cc
u
ra

cy
 (

%
)

256 512 1024 2048 4096 8192
0

2

4

6

(d) Number of MACs

S
p

ee
d

u
p

 HP GT ML EP FK

2T 3T 4T 5T 6T
0.0

0.2

0.4

0.6

0.8

1.0

(c) Number of snapshots

N
o
rm

al
iz

ed
 e

x
ec

u
ti

o
n
 t

im
e

 DGNN-Booster E-DGCN Cambricon-DG TaGNN

1 2 4 8 16 32 64
0

1

2

3

4

5

(b) Number of DCUs

S
p
ee

d
u
p

 HP GT ML EP FK

Figure 14: Sensitivity studies of TaGNN : (a) sensitivity to the
values [𝜃𝑠 , 𝜃𝑒] over Fk dataset; (b) sensitivity to the number
of DCUs; (c) sensitivity to the number of snapshots over FK
dataset; (d) sensitivity to the number of MAC units
ADSC (i.e., WO/ ADSC), accounting for 28.62% of the aggregate
performance improvement.

Figure 13 (a) presents the performance gain breakdown of the
TaGNN architecture, driven by three key components: the MSDL+
DGNN Computation Unit, which minimizes irregular traversal and
data loading overhead, contributing 53.6% on average of the total
performance improvement; the Task Dispatcher, which balances
DGNN workloads, contributing 13.8% on average of the total per-
formance improvement; and the Adaptive RNN Unit, which im-
plements the similarity-aware cell skipping strategy, contributing
32.6% on average of the total performance improvement. Figure 13
(b) highlights that the O-CSR of TaGNN outperforms its counter-
parts employing other state-of-the-art dynamic graph formats, i.e.,
TaGNN -CSR [37, 39, 42] and TaGNN -PMA [28, 33], by factors of 2.3-
3.4 and 1.8-2.5, respectively. This performance advantage is largely
attributed to the O-CSR format, which provides superior data local-
ity and parallelism while reducing redundant storage overhead by
73.5%-82.4% and 53.2%-61.8% for four snapshots compared to CSR
and PMA, respectively.

5.5 Sensitivity Studies
Figure 14 (a) shows the performance of TaGNN on the T-GCNmodel
with varying values of 𝜃𝑠 and 𝜃𝑒 (as detailed in Section 3.1), ranging
from -0.9 to 0.9. Experimental results indicate that the interval be-
tween 𝜃𝑠 and 𝜃𝑒 from -0.5 to 0.5 is optimal for achieving satisfactory
performance while maintaining better accuracy, averaging 57.8% on
the FK dataset. Figure 14 (b) evaluates the sensitivity of TaGNN to

247

SC ’25, November 16–21, 2025, St Louis, MO, USA Hui Yu et al.

the number of DCUs on the T-GCN model. Performance improves
as the number of DCUs increases, peaking at 16, beyond which
memory bandwidth saturation limits further gains. Figure 14 (c)
compares the execution time of TaGNN with leading DGNN acceler-
ators on the T-GCN model across varying snapshot counts. TaGNN
demonstrates strong performance at different snapshot counts, with
optimal results at four snapshots. However, performance slightly
declines as the snapshot count increases due to the rising runtime
overhead of identifying unaffected vertices and computing similar-
ity scores, despite the increased inference throughput. Figure 14
(d) explores the impact of the number of MAC units on TaGNN ’s
performance on the T-GCN model. Performance improves with
more MAC units but levels off due to resource and memory band-
width limitations. For fairness and consistency with state-of-the-art
works (e.g., E-DGCN [46]), 4096 MAC units are selected.

6 Related Work
Software Frameworks for GNN and DGNN. Several software
frameworks for GNNs have emerged, including DGL [32] and
PyG [10], which adopt a message-passing programming model and
utilize the torch-scatter library to enhance edge-wise and node-wise
parallelism, respectively. However, these frameworks are not well-
suited for DGNNs due to their reliance on SpMM-based kernels. To
address this limitation, ESDG [5] employs a graph difference-based
strategy for DGNN training, while PiPAD [31] leverages dynamic
pipeline training strategy to improve DGNN training. However,
they predominantly adopt snapshot-by-snapshot training approach,
leading to low data parallelism.

Hardware GNN and DGNN Accelerators. Numerous GNN
accelerators have been proposed [6, 12, 36, 39, 47]. HyGCN [35]
employs a window-based sliding and shrinking method to improve
the locality of GNN inference. However, these approaches primarily
focus on static graphs and fail to address the temporal dynamics of
DGNNs. For dynamic graphs, DGNN-Booster [7] designs a multi-
level parallelism accelerator for DGNN inference and E-DGCN [46]
employs the reconfigurable processing elements that efficiently
support diverse types of data computations required by DGCN
layers. Cambricon-DG [40] proposes a nonlinear isolation mech-
anism to reduce redundant aggregation operations. While these
solutions can also adopt a multi-snapshot execution pattern, they
still struggle with excessive memory usage and stringent temporal
data dependencies, leading to limited data parallelism.

RNN Approximate Computation. To improve RNN inference,
various solutions utilize approximate computation techniques to re-
duce unnecessary calculations. ALSTM [14] applies approximation
to LSTM operations in speech recognition, reducing energy con-
sumption without compromising accuracy, while ATLAS [17] pro-
poses a low-power LSTM accelerator using approximate multipliers.
However, these methods rely on graph snapshots that fundamen-
tally differ from traditional text and speech data. As a result, they
overlook critical graph topology properties essential for effective
approximation in DGNNs.

7 Conclusion
This paper introduces TaGNN, a topology-aware accelerator de-
signed for high-performance DGNN inference. TaGNN employs
a topology-aware concurrent execution approach that leverages

overlap characteristics across multiple snapshots to reduce irreg-
ular memory accesses and mitigate temporal data dependencies
while improving data parallelism. The experiment results show
that TaGNN achieves speedups of 84.3x to 535.2x compared to
cutting-edge software frameworks.

Acknowledgments
The authors would like to thank the anonymous reviewers for their
insightful comments. This paper is supported by National Key Re-
search and Development Program of China (No. 2024YFB4504200),
National Natural Science Foundation of China (No. 62472183 and
No. 62402457). Yu Zhang (zhyu@hust.edu.cn) is the corresponding
author of this paper.

References
[1] 2021. Nvidia, Nvidia System Management Interface. https://developer.nvidia.

com/nvidia-system-management-interface,2021..
[2] 2023. Intel Product Specifications. https://wcm-stg.intel.com/content/www/us/

en/ark.html..
[3] Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael B. Abu-Ghazaleh, and Rajiv

Gupta. 2023. CommonGraph: Graph Analytics on Evolving Data. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 133–145.

[4] Vignesh Balaji, Neal Crago, Aamer Jaleel, and Brandon Lucia. 2021. P-OPT:
Practical Optimal Cache Replacement for Graph Analytics. In Proceedings of the
27th IEEE International Symposium on High-Performance Computer Architecture.
668–681.

[5] Venkatesan T. Chakaravarthy, Shivmaran S. Pandian, Saurabh Raje, Yogish Sab-
harwal, Toyotaro Suzumura, and Shashanka Ubaru. 2021. Efficient Scaling of
Dynamic Graph Neural Networks. In Proceedings of the 2021 International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. 53–77.

[6] Cen Chen, Kenli Li, Yangfan Li, and Xiaofeng Zou. 2022. ReGNN: A Redundancy-
Eliminated Graph Neural Networks Accelerator. In Proceedings of the 28th IEEE
International Symposium on High-Performance Computer Architecture. 1–14.

[7] Hanqiu Chen and Cong Hao. 2023. DGNN-Booster: A Generic FPGA Accelerator
Framework For Dynamic Graph Neural Network Inference. In Proceedings of
the 31st IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines. 195–201.

[8] Jinyin Chen, Xueke Wang, and Xuanheng Xu. 2021. GC-LSTM: Graph Convolu-
tion Embedded LSTM for Dynamic Network Link Prediction. Applied Intelligence
12, 1 (2021), 1–16.

[9] Michael Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In
Proceedings of the 2016 Annual Conference on Neural Information Processing Sys-
tems. 3837–3845.

[10] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning
with PyTorch Geometric. CoRR abs/1903.02428 (2019), 1–14.

[11] Chang Gao, Daniel Neil, Enea Ceolini, Shih-Chii Liu, and Tobi Delbrück. 2018.
DeltaRNN: A Power-efficient Recurrent Neural Network Accelerator. In Proceed-
ings of the 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. 21–30.

[12] Tong Geng, Chunshu Wu, Yongan Zhang, Cheng Tan, Chenhao Xie, Haoran
You, Martin C. Herbordt, Yingyan Lin, and Ang Li. 2021. I-GCN: A Graph Con-
volutional Network Accelerator with Runtime Locality Enhancement through
Islandization. In Proceedings of the 54th Annual IEEE/ACM International Sympo-
sium on Microarchitecture. 1051–1063.

[13] Mingyu Guan, Anand Padmanabha Iyer, and Taesoo Kim. 2022. DynaGraph:
dynamic graph neural networks at scale. In Proceedings of the 5th ACM SIGMOD
Joint International Workshop on Graph Data Management Experiences & Systems
(GRADES) and Network Data Analytics. 6:1–6:10.

[14] Junseo Jo, Jaeha Kung, and Youngjoo Lee. 2020. Approximate LSTM computing
for energy-efficient speech recognition. Electronics 9, 12 (2020), 1983–2004.

[15] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,
Peter Forsyth, and Pascal Poupart. 2020. Representation Learning for Dynamic
Graphs: A Survey. Journal of Machine Learning Research 21, 5 (2020), 70:1–70:73.

[16] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of the 5th International Conference
on Learning Representations. 1–14.

[17] Fabian Kreß, Alexey Serdyuk, Micha Hiegle, Disnebio Waldmann, Tim Hotfilter,
Julian Höfer, Tim Hamann, Jens Barth, Peter Kämpf, Tanja Harbaum, and Jürgen
Becker. 2023. ATLAS: An Approximate Time-Series LSTM Accelerator for Low-
Power IoT Applications. In Proceedings of the 26th Euromicro Conference on Digital

248

https: //developer.nvidia.com/nvidia-system-management-interface, 2021.
https: //developer.nvidia.com/nvidia-system-management-interface, 2021.
https://wcm-stg.intel.com/content/www/us/en/ark.html.
https://wcm-stg.intel.com/content/www/us/en/ark.html.

TaGNN: An Efficient Topology-aware Accelerator for High-performance Dynamic Graph Neural Network SC ’25, November 16–21, 2025, St Louis, MO, USA

System Design. 569–576.
[18] Alfirna Rizqi Lahitani, Adhistya Erna Permanasari, and Noor Akhmad Setiawan.

2016. Cosine similarity to determine similarity measure: Study case in online
essay assessment. In Proceedings of the 4th International Conference on Cyber and
IT Service Management. 1–6.

[19] Haoyang Li and Lei Chen. 2021. Cache-based GNN System for Dynamic Graphs.
In Proceedings of the 30th ACM International Conference on Information and
Knowledge Management. 937–946.

[20] Osman Asif Malik, Shashanka Ubaru, Lior Horesh, Misha E. Kilmer, and Haim
Avron. 2021. Dynamic Graph Convolutional Networks Using the Tensor M-
Product. In Proceedings of the 2021 SIAM International Conference on Data Mining.
729–737.

[21] Franco Manessi, Alessandro Rozza, and Mario Manzo. 2020. Dynamic graph
convolutional networks. Pattern Recognition 97, 1 (2020), 1–18.

[22] Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev Khu-
danpur. 2010. Recurrent Neural Network based Language Model. In Proceedings of
the 11th Annual Conference of The International Speech Communication Association.
1045–1048.

[23] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and
Daniel Sánchez. 2018. Exploiting Locality in Graph Analytics through Hardware-
Accelerated Traversal Scheduling. In Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture. 1–14.

[24] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2020.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In
Proceedings of the 34th AAAI Conference on Artificial Intelligence. 5363–5370.

[25] Xuehai Qian. 2021. Graph Processing and Machine Learning Architectures with
Emerging Memory Technologies: A Survey. Science China Information Sciences
64, 6 (2021), 1–25.

[26] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with
Interactive Graph Analytics and Visualization. In Proceedings of the 29th AAAI
Conference on Artificial Intelligence. 4292–4293.

[27] Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexan-
der Riedel, Maria Sinziana Astefanoaei, Oliver Kiss, Ferenc Béres, Guzmán López,
Nicolas Collignon, and Rik Sarkar. 2021. PyTorch Geometric Temporal: Spatiotem-
poral Signal Processing with Neural Machine Learning Models. In Proceedings of
the 30th ACM International Conference on Information and KnowledgeManagement.
4564–4573.

[28] Mo Sha, Yuchen Li, Bingsheng He, and Kian-Lee Tan. 2017. Accelerating Dynamic
Graph Analytics on GPUs. In Proceedings of the VLDB Endowment. 107–120.

[29] Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. 2021. Foundations
and Modeling of Dynamic Networks Using Dynamic Graph Neural Networks: A
Survey. IEEE Access 9 (2021), 79143–79168.

[30] Xinkai Song, Tian Zhi, Zhe Fan, Zhenxing Zhang, Xi Zeng, Wei Li, Xing Hu,
Zidong Du, Qi Guo, and Yunji Chen. 2022. Cambricon-G: A Polyvalent Energy-
Efficient Accelerator for Dynamic Graph Neural Networks. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 41, 1 (2022), 116–128.

[31] ChunyangWang, Desen Sun, and Yuebin Bai. 2023. PiPAD: Pipelined and Parallel
Dynamic GNN Training on GPUs. In Proceedings of the 28th ACM SIGPLAN
Annual Symposium on Principles and Practice of Parallel Programming. 405–418.

[32] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li,
Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin
Lin, Junbo Zhao, Jinyang Li, Alexander J. Smola, and Zheng Zhang. 2019. Deep
Graph Library: Towards Efficient and Scalable Deep Learning on Graphs. CoRR
abs/1909.01315 (2019).

[33] Qinggang Wang, Long Zheng, Yu Huang, Pengcheng Yao, Chuangyi Gui, Xiaofei
Liao, Hai Jin, Wenbin Jiang, and Fubing Mao. 2021. GraSU: A Fast Graph Update
Library for FPGA-based Dynamic Graph Processing. In Proceedings of the 2021
ACM/SIGDA International Symposium on Field Programmable Gate Arrays. 149–
159.

[34] Jin Xu and Zheng Bao. 2002. Neural Networks and Graph Theory. Science China
Information Sciences 45, 1 (2002), 1–24.

[35] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun Ye, Zhimin
Zhang, Dongrui Fan, and Yuan Xie. 2020. HyGCN: A GCN Accelerator with
Hybrid Architecture. In Proceedings of the 2020 IEEE International Symposium on
High Performance Computer Architecture. 15–29.

[36] Hui Yu, Yu Zhang, Ligang He, Donghao He, Qikun Li, Jin Zhao, Xiaofei Liao,
Hai Jin, Lin Gu, and Haikun Liu. 2024. CDA-GNN: A Chain-driven Accelerator
for Efficient Asynchronous Graph Neural Network. In Proceedings of the 61st
ACM/IEEE Design Automation Conference. 109:1–109:6.

[37] Hui Yu, Yu Zhang, Ligang He, Yingqi Zhao, Xintao Li, Ruida Xin, Jin Zhao, Xiaofei
Liao, Haikun Liu, Bingsheng He, and Hai Jin. 2024. RAHP: A Redundancy-aware
Accelerator for High-performance Hypergraph Neural Network. In Proceedings
of the 2024 International Symposium on Microarchitecture. 1264–1277.

[38] Hui Yu, Yu Zhang, Andong Tan, Chenze Lu, Jin Zhao, Xiaofei Liao, Hai Jin, and
Haikun Liu. 2024. RTGA: A Redundancy-free Accelerator for High-Performance
Temporal Graph Neural Network Inference. In Proceedings of the 61st ACM/IEEE
Design Automation Conference. 111:1–111:6.

[39] Hui Yu, Yu Zhang, Jin Zhao, Yujian Liao, Zhiying Huang, Donghao He, Lin Gu,
Hai Jin, Xiaofei Liao, Haikun Liu, Bingsheng He, and Jianhui Yue. 2023. RACE:
An Efficient Redundancy-aware Accelerator for Dynamic Graph Neural Network.
ACM Transactions on Architecture and Code Optimization 20, 4 (2023), 53:1–53:26.

[40] Zhifei Yue, Xinkai Song, Tianbo Liu, Xing Hu, Rui Zhang, Zidong Du,Wei Li Li, Qi
Guo, and Tianshi Chen. 2025. Cambricon-DG: An Accelerator for Redundant-Free
Dynamic Graph Neural Networks Based on Nonlinear Isolation. In Proceedings of
the 2025 IEEE International Symposium onHigh Performance Computer Architecture.
934–948.

[41] Xingyao Zhang, Haojun Xia, Donglin Zhuang, Hao Sun, Xin Fu, Michael B. Taylor,
and Shuaiwen Leon Song. 2021. 𝜂-LSTM: Co-Designing Highly-Efficient Large
LSTM Training via Exploiting Memory-Saving and Architectural Design Oppor-
tunities. In Proceeding of the 48th ACM/IEEE Annual International Symposium on
Computer Architecture. 567–580.

[42] Yu Zhang, Xiaofei Liao, Hai Jin, Bingsheng He, Haikun Liu, and Lin Gu. 2019.
DiGraph: An Efficient Path-based Iterative Directed Graph Processing System on
Multiple GPUs. In Proceedings of the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems. 601–614.

[43] Yu Zhang, Jin Zhao, Xiaofei Liao, Hai Jin, Lin Gu, Haikun Liu, Bingsheng He,
and Ligang He. 2019. CGraph: A Distributed Storage and Processing System for
Concurrent Iterative Graph Analysis Jobs. ACM Transactions on Storage 15, 2
(2019), 10:1–10:26.

[44] Jin Zhao, Yun Yang, Yu Zhang, Xiaofei Liao, Lin Gu, Ligang He, Bingsheng He,
Hai Jin, Haikun Liu, Xinyu Jiang, and Hui Yu. 2022. TDGraph: a topology-driven
accelerator for high-performance streaming graph processing. In Proceedings of
the 49th Annual International Symposium on Computer Architecture. 116–129.

[45] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and
Haifeng Li. 2020. T-GCN: A Temporal Graph Convolutional Network for Traffic
Prediction. IEEE Transactions on Intelligent Transportation Systems 21, 9 (2020),
3848–3858.

[46] Yingnan Zhao, Ke Wang, Jiaqi Yang, and Ahmed Louri. 2024. An Efficient Hard-
ware Accelerator Design for Dynamic Graph Convolutional Network (DGCN)
Inference. In Proceedings of the 61st ACM/IEEE Design Automation Conference.
324:1–324:6.

[47] Zhe Zhou, Bizhao Shi, Zhe Zhang, Yijin Guan, Guangyu Sun, and Guojie Luo. 2021.
BlockGNN: Towards Efficient GNN Acceleration Using Block-Circulant Weight
Matrices. In Proceedings of the 58th ACM/IEEE Design Automation Conference.
1009–1014.

249

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background of DGNN
	2.2 Pitfalls of Exiting DGNN Solutions
	2.3 Our Insights

	3 Overview of Our Approach
	3.1 Topology-aware Concurrent Execution
	3.2 Benefits of Customization

	4 TaGNN Overview
	4.1 Overlap-aware Data Loading
	4.2 Adaptive Data Similarity Computation

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 DGNN Inference Accuracy Analysis
	5.4 Effectiveness of TaGNN’s Designs
	5.5 Sensitivity Studies

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

