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Abstract—Streaming Graph Pattern Mining (GPM) has been widely
used in many application fields. However, the existing streaming GPM
solution suffers from many unnecessary explorations and isomorphism
tests, while the existing static GPM ones require many repetitive opera-
tions to compute the full graph. In this paper, we propose a pattern-aware
incremental execution approach and design the first streaming GPM
accelerator called PSMiner, which integrates multiple optimizations to
reduce redundant computation and improve computing efficiency. We
have conducted extensive experiments. The results show that compared
with the state-of-the-art software and hardware solutions, PSMiner
achieves the average speedups of 770.9× and 60.4×, respectively.

I. INTRODUCTION

Graph Pattern Mining (GPM) locates all subgraphs that are iso-
morphic to the specific patterns in a given graph. It is widely used
in many fields, such as social science [9], bioinformatics [13], and
cheminformatics [10]. GPM suffers from high algorithmic complexity
and large-volume of memory accesses. Therefore, many systems [7],
[11], [14] have been proposed to process GPM efficiently.

Early GPM systems [7], [16] adopt the pattern-oblivious approach.
The approach starts from a subgraph (one vertex initially), keeps
expanding it, and then checks whether the resulting subgraph is
isomorphic to the pattern. However, the approach suffers from
unnecessary explorations and isomorphism tests. The pattern-aware
approach generates the matching order to avoid the isomorphism tests
and also generates the symmetry order to prune the exploration space.
Therefore, the pattern-aware approach typically achieves better per-
formance and is adopted by most recent GPM software systems [11],
[14] and hardware accelerators [4], [5].

In the real world, the graphs are often streaming graphs. When a
small number of vertices or edges are updated, it is expensive and
unnecessary to recompute all matching subgraphs in the entire graph.
Therefore, Tesseract [3] proposes an incremental execution approach,
in which it adopts the update-based exploration model. However, it
uses the pattern-oblivious approach, which suffers from unnecessary
explorations and expensive isomorphism tests. To address this prob-
lem, we design a pattern-aware incremental execution approach to
improve the efficiency of streaming GPM.

However, the proposed approach contains many set computations
(such as intersection of two sets), which accounts for more than 89%
of the execution time according to our benchmarking. We analyzed
the runtime characteristics of the set operations in streaming GPM
and made two important observations: i) there are a large amount
of redundant set computations, and ii) the lengths of the two sets
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Fig. 1. An example to illustrate streaming GPM. The blue dashed line
represents added edge.
in pattern-aware streaming GPM are very different. The reason is
because the graph updates are usually associated with a small number
of vertices, and the set operations are linked to these vertices. Based
on the two observations, we further design the redundancy detection
algorithm and a hybrid set computation mechanism.

Since streaming GPM is usually conducted concurrently by mul-
tiple processing elements (e.g., multithreading), detecting the redun-
dant set computation at runtime may cause high lock overhead.
Moreover, it is difficult to process the set operations efficiently on
general-purpose processors (e.g. CPU) [5]. In addition, the existing
GPM accelerators [4]–[6] are designed for static GPM, and are
inefficient for streaming GPM because they search the entire graph
for the given pattern. Therefore, we propose PSMiner, a pattern-
aware accelerator for streaming GPM, to efficiently reduce redundant
set operations and compute the sets with very different sizes (called
hybrid sets).

The contributions of this paper are summarized as follows. i) We
propose a pattern-aware incremental execution approach for stream-
ing GPM. By analyzing the runtime characteristics of the approach,
we propose two optimization techniques to reduce redundant set
computations and improve the computation efficiency on the hybrid
sets. ii) We design a pattern-aware accelerator, which implements a
redundancy detector and the hybrid set computation mechanism. In
the set computation mechanism, we design a novel data-parallelism
and pipeline-based method for accelerating the binary search desired
in the hybrid set computations. iii) We implement PSMiner and
compare it with the state-of-the-art CPU- and ASIC-based solutions.
The results show that PSMiner can achieve significant improvement.

II. BACKGROUND AND MOTIVATION

A. Streaming Graph Pattern Mining
The streaming graph updates, which include the addition and

deletion of edges (an edge is a triple: two vertices and a timestamp
indicating the time of the edge update), arrive constantly and are
buffered in batches [12]. These buffered updates will be applied to
previous graph snapshots to generate the latest graph snapshot.
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Fig. 2. Speedup of GraphPi over Tesseract

After the graph is updated, the matching subgraphs (also called
embeddings) also need to be updated. For example, consider the
example of mining a tailed triangle shown at the top of Fig. 1 (i.e.,
“Pattern P ”). There are two matching subgraphs in the “Input Graph
G”, which are the subgraph consisting of the vertices {1, 2, 4, 5} and
the one of {3, 2, 4, 5}. The bottom row of Fig. 1 shows the four new
matching subgraphs (embeddings) after adding a new edge between
vertices 3 and 4. In order to obtain the updated matching subgraphs,
Tesseract [3], which is a streaming GPM system, has been developed
recently to process the latest snapshot.
B. Static Graph Pattern Mining Execution Model

Existing GPM systems can be classified into two categories in
general: pattern-oblivious and pattern-aware. The pattern-oblivious
approach suffers from high overhead due to unnecessary explo-
rations and isomorphism tests. The pattern-aware solution avoids
the expensive isomorphism tests by specifying the matching order,
and eliminates the repetitive enumerations of identical subgraphs by
specifying the symmetry order [11].

Matching order. In GPM, the matching order is a total order of
vertices in the pattern. For example, in Fig. 1, {u0, u1, u2, u3} is
a matching order of tailed triangle, and indicates that ui is matched
(processed) before uj only when i < j. Since the subgraphs finally
obtained by following the matching order will always match the
pattern, isomorphism tests are not necessary.

Symmetry order. In Fig. 1, u2 and u3 can be mapped to the
subgraphs {4, 5} and {5, 4}, which are actually identical subgraphs.
To avoid such redundant explorations, a partial order (also called
symmetry order) can be defined for symmetry breaking [11]. For
example, the subgraph {4, 5} can be pruned by the restriction of
u2 > u3 in the symmetry order.
C. Limitations of Existing Solutions

In streaming GPM, a newly added edge, especially added to
the high-degree vertices, can create a large number of matching
embeddings. It is a very time-consuming task to simply enumerate
them. Also, it is very costly and unnecessary to recompute all
matching embeddings in the entire graph.

With the incremental computation of streaming GPM, Tesser-
act [3] enumerates all changes using an update-based exploration
approach, which starts from the graph updates (e.g., a newly added
edge) to explore the subgraphs. However, its approach is pattern-
oblivious, which may lead to significant overhead from unnecessary
explorations and isomorphism tests. To demonstrate the problem, we
conducted the experiments to compare Tesseract with GraphPi [14],
which is the state-of-the-art static GPM system and uses the pattern-
aware approach. The details of the platform and datasets used in the
comparison experiments are presented in Section V. GraphPi per-
forms GPM in the entire graph, while Tesseract performs incremental
computation with 10 K updates. As illustrated in Fig. 2 (note that we
do not show the 5-clique algorithm on WT with Tesseract because
its run-time is too long), GraphPi outperforms Tesseract by up to
1020.1x when running the clique algorithms. This is because GraphPi
adopts the pattern-aware approach.

Algorithm 1: Pattern-Aware Incremental Execution Approach
for Streaming GPM

Input: P : pattern; UE: updated edges; G: graph data
Output: UME: updated matching embeddings

1 SO = GenSymmetryOrder(P );
2 PMOS = GenPrunedMultiMatchingOrders(P , SO);
3 foreach edge ue ∈ UE do
4 foreach matching order mo ∈ PMOS do
5 UME ∪ = PatternMatching(ue, mo, SO, G);

u1

Pattern P

u0

u2 u3

Matching ordersSymmetry order
Fig. 3. The set of matching orders generated from the tailed triangle pattern.
The matching order in red is redundant based on the symmetry order.

The existing static GPM software systems [11], [14] and hardware
accelerators [4]–[6] compute the entire graph. In streaming graphs,
recomputing all matching embeddings over the whole graph for each
update batch is expensive and unnecessary. It is expensive because
streaming graph updates arrive frequently and the graphs in the real-
world are usually large. It is unnecessary mainly because only a small
portion of the graph is affected by the graph updates [8].

III. PATTERN-AWARE INCREMENTAL EXECUTION APPROACH

The limitations of the existing solutions drive us to design a
pattern-aware incremental execution approach for streaming GPM.
We aim to reduce repetitive computations by the incremental ap-
proach, while pruning unnecessary subgraph explorations and avoid-
ing isomorphism tests by the pattern-aware approach.
A. The Approach

We observed that each of the updated matching embeddings in
streaming GPM must contain at least one updated edge, and each
updated edge can be matched to any edge of the pattern. For example,
in Fig. 1, the updated matching embeddings all contain the updated
edge (3, 4). The updated edge in the input graph can be matched to
any edge in the pattern P . The incremental approach aims to construct
an embedding (a subgraph) isomorphic to pattern P by starting from
the updated edge to explore other neighboring edges in the input
graph. Note that although GraphPi only generates one matching order,
the first vertex in the matching order has to be mapped to every vertex
in the entire graph.

The main steps of our pattern-aware incremental execution ap-
proach is outlined in Algorithm 1. In the algorithm, a set of matching
orders are generated and then pruned based on the symmetry order
(lines 1-2). Next, the algorithm starts from the updated edges to
explore the matching embeddings by processing these matching
orders (lines 3-5).

The matching orders of a given pattern are generated in the
following way. Since a newly updated edge may match any edge
in a given pattern, the first two elements of a matching order are two
vertices of an edge in the pattern. Since the order of the vertices
matters, two matching orders will be generated for an edge. For
example, two matching orders are generated by the edge connecting
u0 and u1 in Fig. 3, one starting with {u0, u1, ...} and the other
with {u1, u0, ...}. If the number of edges in the pattern is ep, 2× ep
matching orders will be generated.

Further, when two vertices ui and uj in a pattern are symmetric, the
matching orders {ui, uj , ...} and {uj , ui, ...} will induce the identical
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Algorithm 2: The Streaming Pattern Matching Algorithm for
the Tailed Triangle Pattern

Input: ue: updated edge (s,d,t); mo: {u0, u1, u2, u3}; SO:
u2 > u3; N(v): neighbors of vertex v

Output: UME: updated matching embeddings
1 v0 = ue.s, v1 = ue.d;
2 foreach vertex vi ∈ N(v1) do
3 // ev1vi denotes the edge from v1 to vi;
4 if ev1vi .t > ue.t then
5 continue with next iteration;

6 foreach vertex vj ∈ (N(v1) ∩N(vi)) do
7 tj = max(ev1vj .t, evivj .t);
8 if (tj > ue.t) or ((vi < vj) from SO) then
9 continue with next iteration;

10 UME ∪ = {v0, v1, vi, vj};
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subgraphs. The matching order {u2, u3, ...} in the tailed triangle can
be removed when the new edge is (3, 4) and the symmetry order
contains u2 > u3. After redundant matching orders are pruned, the
pattern-aware incremental algorithm starts from the updated edges to
run these matching orders (lines 4-5 in Algorithm 1).

Algorithm 2 outlines the steps of finding the matching embeddings
for the tailed triangle pattern by taking as input the matching order
{u0, u1, u2, u3} and the symmetry order {u2 > u3} in Fig. 3.
Algorithm 2 corresponds to the PatternMatching procedure (Line
5) in Algorithm 1,

The elements u0 and u1 in the matching order are mapped to the
two vertices (v0 and v1) of the updated edge (line 1) (note that u
denotes the vertices in the pattern while v the vertices in the input
graph). Then, the neighbors (denoted by vi) of v1 are traversed to
match u2 (line 2). u3 is matched by the intersection of v1’s neighbors
and vi’s neighbors (line 6) because u3 is the common neighbor of u1

and u2 in the pattern. We also apply the timestamp constraint (lines
4 and 8) similar to Tesseract [3], and the symmetry order (line 8) to
reduce redundant explorations.
B. Challenges in the Approach

We implemented our pattern-aware incremental approach based on
GraphPi [14], which we call GraphPi-S. As discussed in introduction,
there are a large number of set computations (set intersection and
set difference) in streaming GPM, as shown in Fig. 4. In the
benchmarking experiments, we made two important observations
about the runtime characteristics of the set computations in streaming
GPM, which represent the challenges we face to further improve the
performance of our pattern-aware incremental approach.

Numerous Redundant Set Computations. Fig. 5 shows the
percentage of set computations that are repeated in GPM. It can be
seen that 30% of the set computations are repeated from tens of times
to thousands of times. The high repetition of set computations in our
approach can be explained as follows. First, our incremental approach
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Fig. 7. PSMiner architecture overview

generates multiple matching orders, which all start from the updated
edges to explore the matching subgraphs. So the set computations are
performed around the same set of edges. Second, streaming graph
updates usually refer to a small fraction of high-degree vertices in
the input graph [17], which causes most pattern matching operations
to be performed around these same vertices.

In this work, we develop an optimization technique to reduce
repeated set computations. In this technique, we count at runtime
the number of repeated times for the same set computation. The
result of a set computation will be cached when the repeated times
reach a threshold. When the same set computation is invoked in
future, the result is directly fetched from the cache. However, it
may cause high lock overhead to count the repeated times of a set
computation at runtime on the general-purpose cores (such as CPU
cores in a multicore computer). This is because multiple threads need
to access the same memory location where the repeated times of a
set computation is cached. Our experimental results show that the
lock overhead takes up 76.6% of the execution time, which greatly
diminishes the benefits brought by our approach. In addition to the
lock overhead, there are also the overheads of repeat counting itself
and indexing the saved results. These significant overheads eventually
motivate us to develop a specialized hardware unit to efficiently detect
and reduce redundant set computations.

Various Set Computations. The set operands in the set compu-
tations in streaming GPM can have very different lengths (i.e., the
number of elements in the sets). As shown in Fig. 6, most of the
set length ratios (i.e., the ratio of the longer length to the shorter
length) exceed 50, and even more than 1000 in some cases. Given
two sets L and S in a set computation, when the lengths of the
two sets are very different (e.g., |L|>>|S|), the merge-based set
computation algorithm [5], which iterates through the two sets and
detects the common elements, is much less efficient than the binary
search-based algorithm [1], which iterates over the elements in the
shorter set and uses the binary search to determine if the element is in
the longer set. This is because time complexity of the binary search-
based algorithm is O(log(|L|) ∗ |S|) while that of the merge-based
algorithm is O(|L|+ |S|). When |L| >> |S|, log(|L|) ∗ |S| is much
smaller than |L|+ |S|. However, the data dependencies and random
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memory accesses in the binary search algorithm lead to inefficient
executions in the general-purpose hardware. In addition, most static
GPM accelerators [4], [5] only use and optimize the merge-based
algorithm. These challenges also motivate us to optimize the design
of set computations in the specialized hardware accelerator.

IV. THE ARCHITECTURE OF PSMINER

The challenges of software-based implementation of our approach
motivate us to design our hardware accelerator PSMiner, which can
efficiently detect redundant set computations in streaming GPM, and
implement a hybrid set computation processing mechanism, which
allocates the set computations to the merge-based or the binary
search-based units according to their estimated runtimes.

A. Overview

Fig. 7 illustrates the PSMiner architecture. PSMiner contains a
shared cache, a scheduler, and multiple Processing Elements
(PE). The scheduler dynamically assigns the updated edges in a
graph snapshot to the PEs. Each PE starts from an edge to explore
the matching subgraphs. This architecture is similar to FINGERS [4].
Therefore, we exploit its programming interface, execution flow, and
system integration solutions. The key innovation in our PSMiner re-
sides in the internal design of a PE. Each PE contains the following
components. The redundancy detector detects whether the compu-
tation result on a pair of sets has been saved and if not, whether
the result should be saved. The sets dispatcher is responsible for
assigning a set computation task to the binary search unit (BSU)
or the merge unit (MU), which performs the set computation by
the binary search-based algorithm or the merge-based algorithm,
respectively. A hash map resides inside the scratchpad memory
(SPM) to hold the frequently read data for BSU.

B. Reducing Redundant Set Computations

The redundancy detector is designed to detect and reduce redundant
set computations. The overall execution flow of the redundancy
detector is illustrated in Fig. 8. The execution starts from a set
computation, which includes two input sets (set0 and set1) and a
set operation. If the result of the set computation has been saved, the
redundancy detector will return the address of the result. Otherwise,
the set computation will be sent to the sets dispatcher and record
the number of times it has been performed. If the result has been
saved, its address is saved in a hash table, whose <key,value> is
<(id(set0), id(set1), set op), result address>.

However, it is expensive and unnecessary to record the number of
times that every set computation is performed. A large number of
temporary sets will be generated when performing streaming GPM.
For example, to match the last vertex in the 4-clique algorithm,
two set computations must be performed. The result of the first
set computation is a temporary set. Comparatively, the original set
computation, which consists of the vertices’ neighbours, has a higher

probability to be reused. Therefore, we only count the original
set computations. According to our experimental records, the set
computations over temporary sets account for around 50% of all set
computations. Further, we do not save the results of all original set
computations. Rather, we only save the results of the top 30% of most
repeated set computations in a batch of updates by default. The value
of 30% is determined by analyzing the reuse of set computations in
the update batches. Our experimental results show that the reuse count
usually tails off when it is beyond top 30%.

To avoid the lock overhead, we assign to the same PE the updated
edges linked to the same vertex, and allocate a private hash table for
each PE. Specifically, we create a task queue for each PE, and put
all updated edges of a vertex in the queue. Then we iterate over all
the edges in the queue to check their neighbors. If an updated edge
has not been assigned, we add it into the queue. The process repeats
until all updated edges have been assigned.

C. Hybrid Set Computation Units

To efficiently support diverse set computations, we design two
set computation units: MU and BSU. MU executes the merge-based
algorithm while BSU runs the binary search-based algorithm. The
design of MU unit is similar to the state-of-the-art static GPM
accelerator FINGERS. However, the existing accelerators have not
yet considered the optimization of binary search-based algorithm.
In PSMiner, we design a data-parallelism pipeline mechanism to
improve the performance of BSU.

The pipeline mechanism is illustrated in Fig. 9. In this example,
we assume that four elements in the short set are processed in a
pipeline stage. The first four elements to be processed are 2, 9, 16,
and 18. In each pipeline stage, we use the comparison unit (such as
cmp1 in Stage 1) to compare the elements in the short set against
the comparison data, which is taken from the long set based on
the binary search rule. For example, the comparison data (i.e., cmp
data1) of Stage 1 is 10, which is the middle element of the long set,
and the cmp data2 of Stage 2 are 5 and 15, which are the middle
elements between 1 and 10, and between 10 and 19, respectively.
The output of the comparison unit (e.g., the four orange numbers
0011 in Stage 1) in one pipeline stage is combined with the output
of the subsequent stages, which is used as the index to locate the
address of the comparison data. For example, index1 0011 locates
the address of the cmp data2. 0 is obtained by Stage 1 because the
elements 2 and 9 in the short set are less than the cmp data1 (10),
which also suggests that the comparison data (element) in next stage
should be at the left of cmp data1, which locates the comparison data
5. The comparison unit in Stage 2 (i.e., cmp2) generates 0111, which
connects to the output in the previous stage. The connected indices
will together locate the comparison data (cmp data3) in Stage 3.

The output of the entire pipeline, which is index3 in this figure, is
used by the conventional binary search algorithm in the search unit
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Fig. 10. Speedups of GraphPi-S, FINGERS, and PSMiner over GraphPi
TABLE I

REAL-WORLD STREAMING GRAPH DATASETS (SEdges IS THE EDGE
NUMBER OF STATIC GRAPH)

Datasets #Vertices #Edges #SEdges
mathoverflow (MO) 1 24,818 506,550 239,978
askubuntu (AU) 1 159,316 964,437 596,933
superuser (SU) 1 194,085 1,443,339 924,886
wiki-talk-temporal (WT) 1 1,140,149 7,833,140 3,309,592
soc-bitcoin (BC) 2 24,575,382 122,948,162 60,489,096

1 https://snap.stanford.edu/data/ 2 https://networkrepository.com/soc-bitcoin.php

P1 P2 P3 P4 P5 P6
Fig. 11. Patterns for evaluation

as the index to locate the binary search range in the longer set. For
example, the top row 000 in index3 means element 2 is less than 10,
5, and 3. Then the search unit will perform the conventional binary
search algorithm, and continue to search for 2 between 1 and 3 in the
long set. With the pipeline mechanism, the elements in the short set
can be processed simultaneously. For example, after the processing of
elements {2, 9, 16, 18} move to Stage 2, the processing of elements
{19, 22, 24, 28} in the short set can be started in Stage 1.

The sets dispatcher decides which unit, MU or BSU, is better
to run a given set operation, and dispatches the operation to the
corresponding unit. The decision is based on the estimated runtime
of the set operation on MU and BSU. We build the performance
models based on the time complexity and the hardware performance
to estimate the runtime of the set computation. Given two sets L
and S (|L| > |S|), the runtime of the merge-based algorithm to
compute the two sets is modelled by (|L| + |S|)/(MP ∗ F ) (MP
is the number of parallel processing units in MU, F is the clock
frequency of PSMiner). Different from the merge-based algorithm,
the binary search-based algorithm manifests random memory access.
So its runtime can be modelled by multiplying the time complexity
by the latency of memory access (i.e., the startup cost of memory
access), i.e., (LM∗(|S|∗(log(|L|)−PD))/BSP (LM is the latency
of memory access, PD is the depth of the pipeline, and BSP is the
number of search units). The sets dispatcher sends a set operation to
the unit (MU or BSU) which offers shorter runtime. According to our
previous discussions in Section III.B, binary search-based algorithm
is much faster when the lengths of the two sets have big difference,
which is also verified by our experimental results.

V. EVALUATION
Datasets and Benchmarks. In our experiments, we use the five

streaming graph datasets listed in Table I. Each dataset consists
of a collection of graph edges. An edge is represented by a triple
(vi, vj , t), in which vi and vj are the two vertices of the edge and t
is the edge’s timestamp, i.e., the time when the edge update arrives.
The batch size is set to 10 K by default. Six patterns, shown in
Fig. 11, are used in the evaluation, and are from GraphPi [14] and
Peregrine [11].

Baseline. We compared PSMiner with GraphPi [14] and FIN-
GERS [4]. GraphPi is the state-of-the-art software-based GPM system
while FINGERS is a hardware static GPM accelerator. They are
static because they do not consider the streaming graphs, and mine
the matching embeddings by searching the entire graph. We also
implemented our pattern-aware incremental approach into GraphPi,
which is called GraphPi-S. GraphPi and GraphPi-S are run on a
28-core 2-way hyper-threaded Intel Xeon E5-2680 v4 CPU with
256 GB DRAM. Note we do not present the comparison results
against Tesseract [3]. This is because GraphPi outperforms Tesseract
significantly as shown in Fig. 2.

PSMiner Simulation and Configurations. We developed a cycle-
accurate simulator to evaluate the performance of PSMiner. We use
a DDR4-2666 DRAM of 64 GB with four channels, and a 4 MB
shared cache. By default, each PE in PSMiner contains a redundancy
detector, a sets dispatcher, 24 MU, a BSU (which contains a pipeline
with a depth of 5 and 32 search units), a 32 KB private cache, and
a 4 KB SPM.

We implemented the components of PE in Verilog and synthesized
the Verilog code using the Synopsis Design Compiler in 28 nm, where
PSMiner runs at the 1 GHz clock frequency, to estimate the chip area
and the power. We used CACTI [2] to model the SRAMs in PE. The
area of each PE is 1.15 mm2 and its power is 217.1 mW. Each PE
(its area is 0.93 mm2 in 28 nm) of FINGERS also runs at 1 GHz,
and contains 24 IU and a 32 KB private cache. To keep the iso-area
with FINGEERS, we compared a 16-PE PSMiner chip to a 20-PE
FINGERS chip in the evaluation.
A. Overall Results

Fig. 10 shows that GrpahPi-S, FINGERS, and PSMiner achieve
the average speedups of 9.8×, 12.7×, and 770.9×, respectively, over
GraphPi across six different patterns. Our software-based approach
(GraphPi-S) already outperforms GraphPi (the maximum speedup is
222.7×). This is because our incremental execution approach avoids
the full-graph computation, which brings GraphPi-S the significant
advantage in processing large-scale graphs. This is also the reason
why GraphPi-S achieves the speedup of 29.6× over GraphPi on BC
while the speedup on MO is 6.7× (BC is much larger than MO).

PSMiner achieves the speedup of 9.8× to 1583.7× over GraphPi-
S with the average speed up of 78.6×. Such a great performance
improvement is attributed to the fact that PSMiner i) detects and
reduces a large number of redundant set computations, and ii)
designs the specialized hardware to accelerate the set computations.
PSMiner speeds up the processing over FINGERS by 60.4× on
average. FINGERS computes the entire graph, resulting in lots of un-
necessary computations. In addition, FINGERS performs the set com-
putations using the merge-based algorithm, while PSMiner adopts the
hybrid set computations, in which the set computation involving the
sets with very different lengths will be assigned to the BSU unit.
B. Contributions of Optimization Techniques

PSMiner includes two main optimization techniques: reducing
redundant set computations and hybrid set computations. To further
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Fig. 13. Impact of batch size (PSMiner vs PSMiner-N)
investigate the performance gains contributed by each of them, we
implemented PSMiner-N (PSMiner without any optimization) and
PSMiner-R (PSMiner with only redundancy reduction). Fig. 12 shows
the speedups of PSMiner-R vs PSMiner-N and PSMiner vs PSMiner-
R. As shown in Fig. 12, PSMiner-R achieves up to 20.1× speedup
over PSMiner-N, with an average speedup of 3.0×. The performance
improvement of PSMiner-R mainly comes from detection and re-
duction of redundant set computations. Note that the performance
improvement of PSMiner-R over PSMiner-N is not as significant on
BC. This is mainly due to the fact that the updated edges of the large
dataset are sparse compared to the smaller dataset. As a result, there
are not so many redundant set computations.

Fig. 12 also shows that PSMiner achieves the 5.0× speedup
over PSMiner-R on average. The performance improvement mainly
originates from the optimization that accelerates the binary search-
based algorithm through the pipeline-based BSU. We observe that the
significant speedups are constantly achieved on BC across different
patterns. This is because there are a large number of occasions where
the sets’ lengths differ significantly when the streaming GPM is
performed on BC. For example, when mining pattern P1 on BC,
57.9% of set computations involve the input sets whose length ratio
is more than 1000, which has been shown in Fig. 6.
C. Sensitivity Studies

To observe the impact of different batch sizes on the performance
of our optimization techniques, we process P1 using different batch
sizes (i.e., 1 K, 5 K, 10 K, 20 K, and 50 K) in all datasets. As shown
in Fig. 13, as the batch size increases, the performance improvement
becomes more prominent gradually, especially on larger datasets such
as WT and BC. This is mainly because 1) the number of updated
edges of the same vertex increases when the batch size is bigger,
which results in more redundant set computations, and 2) larger
graphs tend to have more high-degree vertices, which are more likely
to be processed by the pipelined BSU.

VI. RELATED WORK

Software GPM Systems. Arabesque [16] and Fractal [7] use the
pattern-oblivious method to mine subgraphs, resulting in unnecessary
explorations and isomorphism tests. To solve the problems, pattern-
aware systems [11], [14] are developed. However, these static GPM
systems compute the entire graph for each update batch. Tesseract [3]
proposes an incremental approach for streaming GPM. However, it
adopts the pattern-oblivious method and shows lower performance
than the state-of-the-art pattern-aware systems, e.g., GraphPi [14].

Related Hardware Accelerators. Existing GPM accelerators all
focus on static graphs. FlexMiner [5] and FINGERS [4] speed up
the set computations based on the merge-based algorithm. DIMMin-
ing [6] and NDMiner [15] use the processing-in-memory architecture
to reduce the costly off-chip data transfer. However, these hardware
accelerators can not efficiently process streaming GPM because they
compute the full graph for each batch of graph updates.

VII. CONCLUSION
In this paper, we proposed a pattern-aware incremental execu-

tion approach for streaming GPM. We identified the limitations

of running streaming GPM on CPUs. In order to address these
issues, we proposed a technique to dynamically detect redundant set
computations, and designed the hybrid set computation mechanism.
Based on the pattern-aware incremental execution approach and the
above optimization techniques, PSMiner, the first streaming GPM
accelerator, is designed in this paper. The experimental results show
that PSMiner archives up to 948.5× speedup (60.4× on average)
compared to the state-of-the-art accelerator.
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