
PGSampler: Accelerating GPU-based Graph
Sampling in GNN Systems via Workload Fusion

Xiaohui Wei1, Weikai Tang1, Hao Qi2, Hengshan Yue1,∗
1Jilin University, China

2Huazhong University of Science and Technology, China
Email: weixh@jlu.edu.cn, tangwk22@mails.jlu.edu.cn, theqihao@hust.edu.cn, yuehs@jlu.edu.cn

Abstract—Graph Neural Networks (GNNs) have demonstrated
remarkable performance across various domains. Sample-based
training, a practical strategy for training on large-scale graphs,
often faces time-consuming graph sampling challenges. To ad-
dress this, GPU-based graph sampling has been introduced, while
there is still room for further efficiency improvements. Though
several prior works have been proposed to accelerate the compu-
tation or memory access for GPU-based graph sampling, we show
that the performance bottlenecks induced by small workload
cannot be ignored. In this paper, we propose PGSampler, an
efficient system for accelerating GPU-based graph sampling.
First, PGSampler leverages a barrier-free execution mode to fuse
workload, significantly improving the resource utilization. By
altering the sampling execution mode, PGSampler also reduces
the preprocessing time before kernel execution, thus accelerating
the whole sampling process. Next, based on the new sampling
execution mode, considering the dynamically generated nature
of sampling tasks, PGSampler adopts a persistent kernel design
and uses the task queue to assign tasks, achieving dynamic load
balancing. Evaluations with diverse parameter settings show that
PGSampler can achieve up to 2.22× performance speedup over
the state-of-the-art GNN system DGL.

Index Terms—graph neural networks, sample-based GNN
training, GPU-based graph sampling, persistent kernel

I. INTRODUCTION

In many practical scenarios, data is naturally organized
into graphs, where entities are represented as nodes, and
relationships between entities are represented as edges. The
graph Neural Network (GNN) is a type of neural network par-
ticularly well-suited for tasks involving graph-structured data
[1], it recursively updates vertices’ features by aggregating
information from their neighbors. GNNs have demonstrated
compelling performance across a spectrum of domains, includ-
ing social network analysis [2], recommendation systems [3],
and molecule analysis [4]. In order to train GNN models more
efficiently, based on widely used deep learning frameworks
[5], [6], many GNN systems such as Deep Graph Library
(DGL) [7] and Pytorch Geometric (PyG) [8] have been de-
veloped, providing robust support for various operations on
graph. Real-world graphs, characterized by their large scale
and high-dimensional features, pose substantial challenges
when training GNN models with L layers. The computational
and memory requirements grow exponentially as the model
considers all neighbors within L hops for each training vertex,
making the training process inefficient and even unfeasible.

*Hengshan Yue is the corresponding author.

Fig. 1. The BSP execution model for graph sampling at each hop.

To scale GNN training to larger graphs, a typical approach
is sample-based training. Various graph sampling algorithms,
including node-wise [9] and layer-wise [10], [11] approaches,
have been proposed. Through these methods, only the features
of sampled vertices are utilized in subsequent mini-batch
training, effectively reducing both computations and memory
consumption. In this paper, we focus on uniform neighbor
sampling [9], a fundamental algorithm for sample-based train-
ing, which uniformly selects a fixed number of neighbors for
each seed vertex depending on the fanout parameter.

Despite the benefits of graph sampling, the process itself can
be time-consuming on CPU [12]. To accelerate it, based on
the observation that the graph topological data can be typically
fitted into GPU memory, the GPU-based graph sampling has
been introduced in the recent GNN systems [7], [13]. Similar
to numerous parallel algorithms on GPU, the core of GPU-
based graph sampling is implemented within a GPU kernel
function, commonly referred to as a sampling kernel.

Although GPU-based graph sampling outperforms the CPU-
based method, there is still considerable potential for im-
proving the efficiency. First, in most existing GNN systems,
the graph sampling at each hop is executed following the
Bulk Synchronous Parallel (BSP) model [14], as shown in
Fig. 1. The sampling kernel is executed once per iteration,
and barrier synchronization should be performed between
each iteration. We observe that due to the nature of neighbor
sampling algorithm, as the iteration count rises, the workload
(the number of vertices to be sampled) increases, but it remains
relatively small especially at the first few hops. Kernels that
process small workload cannot keep GPU computation and
memory units busy enough, leading to low resource utilization.

51

2024 IEEE International Conference on Cluster Computing (CLUSTER)

2168-9253/24/$31.00 ©2024 IEEE
DOI 10.1109/CLUSTER59578.2024.00012

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 C

lu
st

er
 C

om
pu

tin
g 

(C
LU

ST
ER

) |
 9

79
-8

-3
50

3-
58

71
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

CL
U

ST
ER

59
57

8.
20

24
.0

00
12

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2024 at 14:54:21 UTC from IEEE Xplore.  Restrictions apply. 



Besides, with small workload, preprocessing can dominate
the whole sampling process, rather than kernel execution.
Second, in real-world graphs, the distribution of vertex degrees
often follows a power-law distribution [15]. Simply assigning
sampling tasks to a work unit (e.g., warp, block) on GPU
may cause severe load imbalance during the execution of the
sampling kernel.

In this paper, we propose PGSampler, a novel system
that tackles the above challenges. In PGSampler, we alter
the sampling execution mode, relaxing the barriers between
iterations. Instead of processing single-hop sampling workload
during each iteration, this approach allows us to fuse workload
at each hop, asynchronously managing all workloads of L-hop
sampling, leading to improved resource utilization. Besides,
our execution mode requires only a single execution of the
sampling kernel when processing L-hop sampling, achieving
reduced preprocessing overhead. To manage the workload after
fusion more efficiently, we adopt a persistent kernel design
[16] to achieve dynamic load balancing, scheduling tasks
through a task queue. This allows work units to check the
queue for more tasks once they become idle, and continue this
process until no task is left. So, all work units are always busy
and can be expected to have balanced workloads, regardless
of whether they handle numerous small tasks or a few large
tasks during the kernel execution.

Recently, many optimizations have been proposed to im-
prove resource utilization and achieve load balancing in GPU-
based graph sampling. TurboGNN [17] optimizes atomic op-
erations in sampling and uses a predefined task reassignment
strategy to balance the workload; NextDoor [12] employs
“transit-parallelism” and uses three types of GPU kernel,
assigning vertices to different kernels based on their re-
quired threads. Both approaches yield substantial performance
enhancements. However, they both ignore the performance
bottlenecks caused by small workload, may result in lim-
ited improvements. And they both use static load balancing
methods to assign tasks, which requires specialized scheduling
strategies, may introduce additional overhead and lack adapt-
ability to dynamically generated tasks.

In summary, we make the following contributions.
• We achieve the fusion of workload and the reduction

of preprocessing time by altering the execution mode of
the sampling process, which relaxes the barriers between
iterations.

• We propose an efficient graph sampling kernel for fused
workload, which achieves dynamic load balancing in a
single persistent kernel.

• We finally implement PGSampler on top of the DGL.
Experimental results show that PGSampler can achieve
up to 1.57× speedup on the sampling kernel and up to
2.22× speedup on the whole sampling process compared
to DGL.

II. BACKGROUND AND MOTIVATION

In this section, we provide a brief background of GNNs
followed by an introduction to sample-based GNN training and

GPU-based graph sampling. Finally, we discuss the motivation
of our work.

A. Graph Neural Networks

Given a graph G = (V,E), the input of a GNN model
includes two components: the topological structure of the
input graph and the dense feature vectors associated with
each vertex. A GNN model consists of multiple layers, where
each layer updates the feature of each vertex by gathering
information from its neighbors. The core computations in a
GNN layer can be summarized as follows:

a(k)v = Aggregate(k)
({

h(k−1)
u | u ∈ N (v)

})
h(k)
v = Update(k)

(
h(k−1)
v , a(k)v

) (1)

As shown in (1), the feature vector of vertex v at layer k is
denoted by hk

v , and its neighbors are represented by N (v).
The Aggregate function determines how information from
neighboring vertices is aggregated, while the Update func-
tion determines how the feature vector of the current vertex
is updated based on its aggregated information. These two
functions vary across different GNN models [9], [18]–[20],
aiming to achieve optimal performance in diverse scenarios.

B. Sample-based GNN Training

While GNNs offer powerful capabilities for learning from
the graph-structured data, their training often encounters chal-
lenges. In traditional GNN training, each vertex gathers in-
formation from all neighboring vertices, this makes training
hard to scale. On the one hand, real-world graphs can contain
millions or even billions of vertices and edges, making it com-
putationally expensive to process all the information associated
with each vertex and its neighbors. On the other hand, ver-
tices in real-world graphs often have high-dimensional feature
vectors, which further increases the memory footprint of the
GNN training. To address these issues, sample-based training
is widely adopted. In each mini-batch training iteration, the
whole process of this approach can be divided into four stages.
First, a batch of training vertices is taken as seeds, and their
neighbors are sampled in CPU based on a specific graph
sampling algorithm to create a subgraph for each GNN layer.
Next, feature vectors of the input vertices are extracted as input
features. Then, subgraphs and input features are transferred
into the GPU via PCIe. Finally, mini-batch GNN training is
performed on the GPU with the sampled subgraphs and loaded
features. Fig. 2 illustrates the pipeline of sample-based GNN
training discussed above. This process will run iteratively until
the model converges to the desired accuracy.

C. GPU-based Graph Sampling

The increasing scale of graph datasets has made graph
sampling a critical bottleneck in the training process. Thus,
leveraging GPU to accelerate graph sampling has been an
effective approach in many GNN systems. In contrast to CPU-
based sampling, GPU-based graph sampling involves loading
graph topological data into GPU memory beforehand. The

52

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2024 at 14:54:21 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Sample-based training for a 2-layer GNN on V5, h(k) denotes the
feature vectors at layer k. (sampling algorithm: uniform neighbor sampling,
batch size = 1, fanout for each layer = 2)

Fig. 3. The single-hop GPU-based graph sampling process implemented in
DGL.

sampled results then need to be returned to the CPU for
extracting the features of the sampled vertices. DGL is a
widely-used framework that provides comprehensive graph
operations, including GPU-based graph sampling. Due to its
versatility, we center our discussion on DGL when introducing
the implementation of GPU-based graph sampling. Fig. 3
shows the single-hop GPU-based graph sampling process
implemented in DGL (V1.0.1). In the sampling kernel, each
vertex is assigned to a GPU block, each thread within a
block determines whether a neighbor should be sampled based
on the Reservoir algorithm [21]. However, GPU-based graph
sampling can still take a substantial portion of one mini-
batch training iteration [17]. There are many factors that
can influence the performance of the sampling kernel. As
shown in Fig. 3, the complexity of the sampling task for each
block varies due to differences in the degrees of the assigned
vertices. This discrepancy can be quite significant especially
when processing power-law graphs, leading to severe load

TABLE I
THE PROFILING RESULT OF THE SAMPLING PROCESS DURING ONE BATCH
TRAINING ITERATION. WORKLOAD DENOTES THE NUMBER OF VERTICES

TO BE SAMPLED. BATCH SIZE: 2048. FANOUT TUPLE: (10, 10, 10).
DATASET: OGBN-PRODUCTS. (PRE: PREPROCESSING TIME. KERNEL:

SAMPLING KERNEL EXECUTION TIME. UTILIZATION: THE PERCENTAGE OF
THE PEAK VALUE.)

Hop Workload Pre (µs) Kernel (µs) Utilization (%)

Comp Mem

Hop 1 2048 129.0 13.2 15.48 5.97

Hop 2 21633 127.7 92.4 48.68 19.49

Hop 3 179709 127.0 662.0 55.02 24.79

imbalance. Moreover, uncoalesced memory access, warp di-
vergence and atomic operations in the sampling kernel can
cause low resource utilization. Therefore, prior works [12],
[17], [22] have proposed their optimized hardware-friendly
sampling kernels to further improve the efficiency of GPU-
based graph sampling.

D. Motivation

Despite previous efforts achieving significant improvements
in the resource utilization of the sampling kernel, their primary
focus lies on computation or memory access patterns. The
execution of their sampling process is still based on the BSP
model at each hop, which is intuitive in programming but
may introduce small workload during the sampling process.
To attain a deep understanding of the performance bottlenecks
caused by small workload, we perform 3-hop graph sampling
using NeighborSampler [23] in DGL on Ogbn-products dataset
[24] and profile the performance during one mini-batch train-
ing iteration via Nvidia Nsight tools [25], [26].

As shown in Table I, the resource utilization (including
computation and memory throughput) at the first two hops
is much lower compared to the last hop. The experimental
results show that small workload cannot fully utilize the
massively parallel resources of the GPU. We also measure
the preprocessing time and sampling kernel execution time.
The preprocessing overhead includes (1) the time required for
data transfer between host and device (e.g. memory operation
initiated by the CUDA API), (2) the execution of essential
host function calls before kernel launch (e.g. data formatting),
and (3) the kernel launch overhead. Even worse, with small
workload, preprocessing can take much longer time than
sampling kernel execution at the first few hops, causing GPU-
based graph sampling inefficient. It is noteworthy that the issue
of small workload is nearly inevitable, as increasing the batch
size to a large value can lead to a considerable slowdown in
convergence [27].

In fact, the sampling process of hop (n + 1) can begin as
soon as seed vertices for it have been produced by hop n. That
is, the sampling process of multiple hops can be executed
almost simultaneously rather than sequentially processing
single-hop sampling at a time. As shown in Fig. 2, V3 is the
sampled neighbor of V5 during the first-hop sampling, it is also

53

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2024 at 14:54:21 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. The design of PGSampler.

one of the seed vertices for the second-hop sampling. Once V3

is sampled, the second-hop sampling can begin immediately
without the necessity to await the completion of the first-hop
sampling. This observation presents an opportunity to relax
the barriers between iterations. In contrast to the traditional
execution mode, without the restrictions on iteration order, all
workloads of L-hop sampling can be managed within a single
kernel execution without additional synchronization. Because
the entire multi-hop sampling is performed continuously on
the GPU, data (e.g. intermediate results) can be reused for
subsequent hops, further enhancing the efficiency of the sam-
pling process.

While the introduction of workload fusion can significantly
increase the workload of single sampling kernel to a consid-
erable size, it also brings challenges to the task assignment.
CUDA programming allows a thread to execute multiple times
in a loop [28], so load balancing can be achieved through
various static allocation methods. However, new tasks are
dynamically generated as we fuse workload together. Many
proposed static load balancing methods [17] rely on a pre-
determined number of tasks, which may introduce additional
overhead and are unsuitable for dynamic task generation. Thus,
our target is to achieve dynamic load balancing during task
assignment in the sampling kernel.

III. PGSAMPLER

In this section, we propose PGSampler, an efficient system
designed to facilitate fast GPU-based graph sampling on
various real-world graph datasets. We first present an overview
of PGSampler and then introduce two key techniques in it:
(1) a novel sampling execution mode for fusing workload and
reducing preprocessing overhead, and (2) a persistent sampling
kernel to achieve dynamic load balancing.

A. Overview

Fig. 4 illustrates the overview of PGSampler. We also
choose the block as the work unit, and after initialization,
each block will loop until all tasks are completed due to the
persistent kernel design. The loop mainly encompasses four
steps: (1) task acquisition; (2) sampling and writing results;
(3) task generation with deduplication; and (4) completion
judgement. As for memory usage, we leverage both global
memory and shared memory. The task queue which contains
tasks and queue status is stored in global memory. Addition-
ally, sampling results and a boolean array for deduplication
usage are stored in global memory. The task fetched for
current iteration is stored in shared memory as a shared task,
along with shared queue status, which will be updated every
time before judging the completion of sampling. (see Section
III-C for more details about deduplication and completion
judgement)

B. Sampling Execution Mode

The current design of sampling kernels, such as in DGL,
typically treats each sampled vertex as a task, without explic-
itly leveraging hop number information. As shown in Fig. 5a,
because the L-hop sampling is executed within an iteration,
the hop number information is implied in the iteration rounds.
However, as discussed in Section II-D, with the BSP execution
model at each hop, the issue of small workload can become
the performance bottleneck of GPU-based graph sampling.

To address this issue, based on the observation that the
sampling process of multiple hops can be executed almost
simultaneously, we introduce a novel task definition to achieve
barrier-free sampling execution mode in PGSampler, fusing
the workload at each hop. Specifically, now each task is a
structure with two attributes: vertex ID and hop number. As
shown in Fig. 4, with seed vertices V0 and V1, the initial tasks

54

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2024 at 14:54:21 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. Our sampling execution mode compared to DGL.

are two structures whose hop number attributes are both set
to 1. That means every time a task is assigned to a block,
we can not only get the vertex to be sampled, but also know
which hop does this sampling task belongs to. Based on the
hop number, the sampling results can be accurately written
to the corresponding locations (see Section IV-A for more
details about result format). Subsequently, new tasks can be
generated by assigning the vertex ID as the sampled neighbors
ID, and incrementing the hop number by 1. As shown in
Fig. 4, with sampled neighbors V2 and V3, the new generated
tasks are two structures whose hop number attributes are both
set to 2. Therefore, instead of processing single-hop sampling
workload during each iteration, the workloads at different hops
have been effectively fused, allowing the management of all
workloads in L-hop sampling within a single kernel execution.
Based on our execution mode, now there is no need to follow
the BSP model at each hop, iterating L times for L-hop
sampling. As shown in Fig. 5b, the sampling kernel is executed
only once, which means that only a single preprocessing step
is required, thereby reducing preprocessing overhead.

C. Sampling Kernel

Following the alteration of the execution mode to achieve
workload fusion, the sampling kernel should possess the capa-
bility to manage all workloads of L-hop sampling. A practical
approach involves launching a sufficient number of blocks,

Algorithm 1: The persistent sampling kernel
Input: Initialized task queue queue, queue status

taskIndex and tailIndex, The number of
tasks fetched in each iteration fetchSize,
graph G, the number of GNN layers
layerNum, fanout at each hop fanouts,
random seed seed

Output: Sampling results resArray
1 shared int sharedTaskIndex;
2 shared int sharedTailIndex;
3 shared struct {
4 int hopNum;
5 int vertexID;
6 } sharedTasks[fetchSize];
7 if threadIdx.x == 0 then
8 sharedTaskIndex = blockIdx.x;
9 sharedTailIndex = tailIndex;

10 end
11 syncthreads();
12 while sharedTaskIndex < sharedTailIndex do
13 if first iteration then
14 sharedTasks[0] = queue[sharedTaskIndex];
15 else
16 for i = 0 to fetchSize− 1 in parallel do
17 loc = sharedTaskIndex+ i;
18 sharedTasks[i] = queue[loc];
19 end
20 end
21 syncthreads();
22 foreach task ∈ sharedTasks do
23 neighbors = Sample(task, seed,G, fanouts);
24 WritingResults(task, neighbors, resArray);
25 if task.hopNum < layerNum then
26 newTasks = TaskGen(task, neighbors);
27 dTasks = Deduplication(G,newTasks);
28 foreach dTask ∈ dTasks in parallel do
29 tail = atomicAdd(&tailIndex, 1);
30 queue[tail] = dTask;
31 end
32 end
33 end
34 if threadIdx.x == 0 then
35 sharedTaskIndex =

atomicAdd(&taskIndex, fetchSize);
36 sharedTailIndex = tailIndex;
37 end
38 syncthreads();
39 end

then storing all tasks (including both initial and generated
tasks) in global memory. Each block is responsible for one task
before concluding its execution. However, this approach can
cause load imbalance issue as previously mentioned in Section
II-C. Additionally, when processing large-scale real-world

55

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2024 at 14:54:21 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 2: Deduplication algorithm
Input: Graph G, generated tasks newTasks, boolean

array boolArray
Output: Tasks after deduplication dTasks

1 foreach task ∈ newTasks in parallel do
2 vertexID = task.vertexID;
3 hopNum = task.hopNum;
4 vertexNum = G.vertexNum;
5 loc = vertexID + vertexNum ∗ (hopNum− 1);
6 if boolArray[loc] == false then
7 oldV alue = atomicOr(boolArray + loc, 1);
8 if oldV alue == false then
9 Append task to array dTasks;

10 end
11 end
12 end

graphs, the execution order of millions of blocks depends
on GPU hardware scheduling, leading to high scheduling
overhead. Inspired by the persistent kernel design [16], the
key idea of our sampling kernel is to achieve dynamic load
balancing tailored for dynamically generated tasks through the
utilization of a global task queue. The detail of our sampling
kernel is described in Algorithm 1.

1) Persistent kernel design: Different from the traditional
kernel design, where the number of launched blocks is related
to the work size, a persistent kernel only launches enough
blocks to reach the maximum occupancy of GPU Streaming
Multiprocessors (SMs). So once all blocks are scheduled to
the SMs, there will be no additional hardware scheduling
overhead. During the entire kernel execution, these blocks
remain resident and continuously work within a loop. In each
iteration, tasks are assigned through a task queue. As shown in
Fig. 4, every time a block completes the current task, it will try
to fetch new tasks from the queue, unless all tasks have been
completed. Unlike the manual assignment of tasks based on a
predetermined strategy, which is common in many static load
balancing methods, this queue-based scheduling approach is
indifferent to which task a block is assigned. Its primary focus
is on keeping the block busy, thereby achieving dynamic load
balancing: a block can handle either numerous small tasks or
a few large tasks. It is better suited for dynamically generated
tasks, as the application of a static method might necessitate
frequent execution of certain operations (e.g., sorting) on
dynamically generated tasks, leading to potential performance
degradation.

As for the implementation of the task queue, we utilize two
global counters to track the status of the queue: taskIndex
(indicating the first task to be processed) for popping and
tailIndex (indicating the end of the task queue) for pushing.
Modifications to both counters are based on atomic operations
to guarantee data consistency in concurrent scenarios.

2) Task acquisition: Every time a block tries to fetch new
tasks, we first choose a leader thread (line 7, line 34 in

Algorithm 1) to store the starting index into shared memory.
The initial value of sharedTaskIndex in each block corre-
sponds to the block ID (line 8). Initially, each block fetches
only one task (line 13-14). Upon completing this task, the
subsequent value of sharedTaskIndex is determined using
the atomicAdd function (line 35). Each block then fetches
fetchSize tasks for the next iteration and stores them into the
sharedTasks array (line 16-19). Consequently, threads within
the block can read the shared memory to access the same tasks
when executing the reservoir algorithm for sampling (line 23).

3) Deduplication: The presence of common neighbors in
the graph introduces the possibility of duplicate tasks. As
shown in Fig. 4, V2 is the common neighbor of V0 and V4.
If both V0 and V4 sample V2 at the first hop, only one new
task with vertex ID set to 2 should be enqueued for the next
hop sampling. So after new tasks are generated using the
method described in Section III-B, deduplication should be
performed before pushing them into queue. The pseudo-code
of the deduplication algorithm is presented in Algorithm 2.
We utilize a global boolean array to judge whether the same
task is already present in the queue. An index is calculated
first for each generated task (line 5). Subsequently, we check
the corresponding value in the boolean array (line 6) and use
atomicOr function to ensure the correctness of the value in
concurrent scenarios (line 7). If a task is not duplicate, it will
be appended to the deduplication result array (line 9).

After deduplication, with index determined by atomicAdd
function, generated tasks will be pushed into the queue (line
28-30 in Algorithm 1).

4) Completion judgement: The simplest method to judge
completion is to validate whether the number of completed
tasks has reached a specified value. However, because of the
stochastic nature of graph sampling, accurately estimating the
total number of tasks in advance is challenging, thereby may
complicate the judgment for task completion.

In fact, despite the presence of duplicate tasks, the number
of new tasks enqueued by each block after deduplication in
each iteration is still proportional to the fanouts parameter.
Therefore, as long as the value of fetchSize is appropriately
set, ensuring tasks are consumed slower than they are gener-
ated, tailIndex will always increase faster than taskIndex.
Since the sampled neighbors at the last hop are not used
to generate new tasks (line 25 in Algorithm 1), tailIndex
will eventually stop to increase. Therefore, taskIndex will
catch up with tailIndex only when all tasks are completed.
In order to ensure that the judgment results of all threads in
the block are consistent, besides sharedTaskIndex, we have
introduced another shared variable, i.e., sharedTailIndex,
whose initialization and update are performed simultaneously
with those of sharedTaskIndex (line 9, line 36). In summary,
in PGSampler, when sharedTaskIndex is not less than
sharedTailIndex (line 12), all tasks are guaranteed to be
completed.

To determine the value of the fetchSize, a crucial con-
straint is making it less than fanouts. Based on our parameter
settings (see Section V-A3) and considering the influence of

56

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2024 at 14:54:21 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Result array for the sampling of n-layer GNN.

Fig. 7. The use case of PGSampler.

duplicate tasks, fetchSize is consistently set to 5 during
evaluation.

IV. IMPLEMENTATION

We built PGSampler on the top of the DGL (v1.0.1) [7] and
PyTorch (v1.13) [5]. In this section, we first delve into two
key implementation details of PGSampler: the sampling result
format and the reuse of finished tasks. We finally describe how
our system integrates with DGL.

A. Result Format

Aligned with the implementation in DGL, in PGSampler,
the final output of the sampling process should be multiple
subgraphs represented as adjacency matrices in COO format.
To achieve this, the sampling results of each vertex are written
to an “array of structure of array”, as shown in Fig. 6. The
length of the array is equal to the number of GNN layers.
Each element of the array is a structure, and each structure
contains two pointers. Specifically, one pointer to a row array
and another pointer to a column array, storing the sampling
results for a single hop. This result format facilitates coalesced
memory access during the results writing phase.

TABLE II
DETAILS OF GRAPH DATASETS USED FOR EVALUATION.

Dataset #Vertex #Edge Feature Class

Reddit 232,965 114,615,892 602 41

Flickr 89,250 899,759 500 7

Yelp 716,847 13,954,819 300 100

Ogbn-arxiv 169,343 1,166,243 128 40

Ogbn-products 2,449,029 61,859,140 100 47

Coauthor-physics 34,493 495,924 8,415 5

B. Reuse of Finished Tasks

In many GNN models, such as GraphSAGE [9], the update
of vertices features needs to use their own features from
the preceding layer. So DGL always includes the destination
vertices (vertices to be sampled) themselves in the source
vertices (sampled neighbors) [29]. In PGSampler, we also try
to use the destination vertices themselves for the subsequent
hop sampling if their corresponding tasks are not duplicate in
the queue. As shown in Fig. 4, during task generation, the
finished task may be re-introduced after deduplication. In this
case, the vertex ID remains unchanged, while the hop number
is incremented by 1.

C. Integration

The core of PGSampler, i.e., the sampling kernel, is imple-
mented in CUDA and C++ for performance reasons. To seam-
lessly integrate the kernel implementation with the Python
front-end interface provided by DGL, we leverage the DGL
Foreign Function Interface (FFI) [30]. As shown in Fig. 7,
by adopting this approach, programmers can use our custom
sampler conveniently just like any DGL’s existing samplers.

V. EVALUATION

In this section, we first comprehensively evaluate the perfor-
mance of PGSampler on real-world graph datasets. Following
this, we analyze the effectiveness of our optimization tech-
niques. Finally, we validate the correctness of PGSampler by
examining the training convergence.

A. Experimental Setup

Unless specified otherwise, all results are reported as the
average of 10 training epochs.

1) Environments: We conducted our experiments on a
server that consists of two Intel Xeon E5-2680v4 2.40GHz
CPUs, 125GB main memory and a single NVIDIA RTX 3090
(24GB memory) GPU, except for the experiments in Table III,
which were performed on a NVIDIA Tesla P40 GPU. The
server is installed with Ubuntu 20.04, GCC 9.5.0, CUDA
library 11.7, DGL v1.0.1 and PyTorch v1.13.

2) Datasets: The graph datasets used for evaluation are
listed in Table II, including a social network graph Reddit [9],
Flickr and Yelp introduced in the GraphSAINT paper [31], two
datasets from Open Graph Benchmark (OGB): a co-purchasing

57

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2024 at 14:54:21 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8. The sampling kernel speedup over DGL.

Fig. 9. The whole sampling process speedup over DGL.

TABLE III
THE SAMPLING KERNEL PERFORMANCE COMPARED TO TURBOGNN.

BOTH SAMPLERS PERFORM 3-HOP SAMPLING. SOD DENOTES THE
SPEEDUP OVER DGL.

Dataset Sampler Batch Size Fanout SoD

Reddit
PGSampler 4K 15 1.23×
TurboGNN 4K 30 1.15×

Ogbn-products
PGSampler 10K 15 1.36×
TurboGNN 200K 15 1.30×

network Ogbn-products [24] and a citation network Ogbn-
arxiv [32], and the ”physics” part of the Coauthor dataset
[33]. For the OGB datasets, the official training sets provided
by OGB are employed, while for the remaining datasets, we
follow the data splits provided by DGL.

3) Parameter settings: We run the experiments with mul-
tiple parameter settings, all of which are widely adopted to
achieve optimal training performance in many GNN systems.
[27]. The number of sampled vertices (batch size) tested in
the experiments includes 2048, 4096, 8192 and 10240, while
the choice of the number of neighbors to be sampled for
each vertex (fanout) includes 10, 15 and 20. Besides, in the
experiments, the fanout parameters for each layer are the same.
For example, for a 3-layer GNN, the fanout tuple can be set
to (10, 10, 10), (15, 15, 15) or (20, 20, 20).

4) Models: Within each mini-batch training iteration, GPU
sampling and subsequent training are two completely separate
stages in DGL. Therefore, the choice of the GNN model
for training does not influence the evaluation of sampling
performance. Accordingly, only GraphSAGE [9] is used as the

representative GNN model when evaluating the performance
of our custom sampler. To evaluate 2-hop and 3-hop neighbor
sampling, we create 2-layer and 3-layer models, with the
dimension of the hidden layers set to 256.

5) Baselines: We choose two baseline implementations for
comparison: (1) DGL [7] is the state-of-the-art GNN system
that supports multiple backends. We choose PyTorch version
in this work. (2) TurboGNN [17] introduces a series of opti-
mization techniques to enhance the end-to-end performance of
the sampling-based GNN training pipeline. We compare with
its GPU sampling module in the evaluation.

B. Performance Results

We first compare the sampling kernel performance of
PGSampler with DGL’s neighbor sampler [23]. Our optimiza-
tion techniques achieve significant improvements in resource
utilization, with computation throughput up to 1.59× and
memory throughput up to 2.01× over DGL. Fig. 8 shows the
sampling kernel speedup over DGL on different datasets. Note
that due to the difference in sampling execution modes, we
compare the total sampling kernel execution time with DGL.
Our results indicate that PGSampler outperforms DGL in all
the cases and achieves up to 1.57× speedup. We observe
that our method performs slightly better on Flickr (1.47×
on average), Ogbn-arxiv (1.44× on average) and Coauthor-
physics (1.46× on average). This is because for the sampling
in DGL on small graphs, despite the workload increasing with
the sampling hop, it tends to be quickly constrained by the
total number of vertices. Thus, the issue of small workload can
still be the main concern even at the last hop, leading to more
performance gain from our workload fusion. For larger and
more power-law graph datasets like Reddit, Yelp and Ogbn-

58

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2024 at 14:54:21 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 10. Kernel execution time of the “DGL+Fusion” compared to PGSam-
pler.

Fig. 11. Validation accuracy using PGSampler and DGL during training.
Dataset:Ogbn-products. Batch size: 10240. Fanout tuple: (10, 10, 10).

products, load imbalance emerges as a primary challenge once
the workload at each hop becomes large enough. Due to our
implementation of the dynamic load balancing, significant
performance improvements can also be achieved on these
datasets (1.19×, 1.37× and 1.23× speedup on average on
Reddit, Yelp and Ogbn-products, respectively).

We also find that speedup increases when batch size, fanout
or the number of sampling hops increases. This phenomenon
arises due to the larger workload at each hop, which re-
sults in a larger total workload after fusion. This achieves
further improvement of resource utilization and amplifies the
effectiveness of load balancing, leading to a more significant
speedup.

As previously mentioned, our barrier-free sampling execu-
tion mode should also benefit the whole sampling process
due to the reduction of preprocessing time. As shown in
Fig. 9, PGSampler can achieve up to 2.22× speedup on
the whole sampling process over DGL. Specifically, one can
notice that across different datasets, the best performance
speedup is always attained when performing 3-hop sampling

with relatively small batch size and fanout. This is because
at these points, the sampling kernel performance has been
well optimized, while preprocessing still dominates the whole
sampling process.

C. Effectiveness of Workload Fusion

Next, we compare PGSampler with the GPU sampling
module presented in TurboGNN [17], which also outperforms
DGL but still follows the BSP execution model for the
sampling at each hop. TurboGNN has not open-sourced its
implementation. In their paper, they use two datasets (Reddit
and ogbn-products) to evaluate their sampling kernel. For a
fair comparison, we (1) use the same two datasets and (2)
use the GPU (Tesla P40) that is comparable with the GPU
of TurboGNN (Tesla P100) in performance-critical factors.
As shown in Table III, PGSampler outperforms TurboGNN
on both two datasets. Specifically, PGSampler achieves more
performance gain with a 2× reduction in fanout on Reddit and
a 20× reduction in batch size on Ogbn-products. The results
show that through workload fusion, PGSampler demonstrates
improved performance with relatively small batch size and
fanout, which are commonly utilized settings in GNN training
to speed up convergence [27].

D. Effectiveness of Dynamic Load Balancing

To evaluate the effectiveness of dynamic load balancing,
we first design a relevant baseline which only incorporates
the workload fusion, denoted as “DGL+Fusion”, and then
compare PGSampler with DGL+Fusion on two graphs due
to the space limit. As shown in Fig. 10, without dynamic
load balancing, DGL+Fusion performs worse than PGSampler
in all the cases, especially when processing 3-hop sampling
with large batch size. This is due to the dependence on
GPU hardware scheduling, as the total workload increases,
DGL+Fusion will suffer from high block scheduling overhead,
leading to significant performance degradation.

E. Training Convergence

To validate the correctness of our implementation, we
evaluate the validation accuracy during GNN training with
PGSampler and DGL’s neighbor sampler on the Ogbn-
products dataset. As shown in Fig. 11, on both 2-layer and
3-layer GraphSAGE, the convergence behavior of PGSampler
is approximately the same as the DGL’s built-in sampler,
which confirms that the sampling results of PGSampler are
as expected.

VI. RELATED WORK

A. GNN Systems

The unique characteristics of graph data and the message-
passing nature of GNN training necessitate specialized system
design considerations compared to traditional DNNs. Apart
from DGL [7] and PyG [8], many GNN systems [34]–[38]
have been designed for training graph neural networks. Due
to the prevalence of large-scale graphs, a single GPU becomes
insufficient for processing millions, or even billions, of vertices

59

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2024 at 14:54:21 UTC from IEEE Xplore.  Restrictions apply. 



and edges. Thus, these systems primarily concentrate on ac-
celerating distributed training on multiple GPUs. For instance,
NeutronStar [38] proposes a hybrid dependency management
to improve communication and computation efficiency. To
demonstrate the practical applicability of PGSampler, we
integrate it into DGL, which is one of the most popular
GNN systems. While our implementation is mainly oriented
to single-GPU training, techniques such as graph partitioning
[39] enable straightforward scaling of our optimizations to
multi-GPU scenarios.

B. Optimizations in Sample-based GNN Training

Many works have been proposed to accelerate sample-based
GNN training, targeting improvements on different stages of
the training pipeline. For the sampling stage, typical works
like C-SAW [22] and NextDoor [12] implement efficient GPU
sampling kernels based on different parallelism paradigms.
The GPU sampling module of TurboGNN [17] utilizes shared
memory to optimize global atomic operations and achieves
balanced workload in sampling. Our work also tries to accel-
erate the sampling stage. Unlike the aforementioned existing
works, PGSampler concentrates on addressing the perfor-
mance bottlenecks caused by small workload, thus achieving
high-performance sampling. To accelerate feature extraction,
both PaGraph [40] and GNNLab [13] propose efficient caching
policies aimed at reducing data loading time. For the training
stage, kernel optimizations [41]–[43] play a crucial role in
overcoming the challenges of training GNNs on large-scale
graphs.

C. Persistent Kernel

Persistent kernel design [16] has been widely adopted to
benefit irregular applications, such as graph processing [44],
[45]. Compared to traditional kernel design, persistent kernel
offers the advantage of reducing kernel launch overhead and
facilitates the implementation of dynamic load balancing [46].
Graph sampling for GNN training differs from traditional
graph processing algorithms due to its distinctive layer-stacked
characteristics and the inherent stochastic nature. Conse-
quently, PGSampler introduces deduplication and completion
judgment mechanisms in the persistent sampling kernel to
ensure both correctness and efficiency.

VII. CONCLUSION

In this paper, we present PGSampler, a novel high-
performance system for efficient GPU-based graph sampling.
Specifically, we address performance bottlenecks by fusing
workload, reducing preprocessing overhead and achieving
dynamic load balancing in a single persistent kernel. We
evaluate PGSampler with a series of parameter settings on
6 graph datasets. Experimental results show that PGSampler
accelerates the sampling kernel by up to 1.57× and the whole
sampling process by up to 2.22× compared to DGL, without
compromising the training convergence.

VIII. ACKNOWLEDGMENT

We sincerely thank our shepherd and the anonymous re-
viewers for their insightful comments and feedback. This work
is supported by the National Key Research and Development
Program of China (Grant No. 2023YFB4502304) and Na-
tional Natural Science Foundation of China (NSFC) (Grants
No.62272190, No.62302190)

REFERENCES

[1] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[2] M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” Advances in neural information processing systems, vol. 31,
2018.

[3] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph
neural networks for social recommendation,” in The world wide web
conference, 2019, pp. 417–426.

[4] A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur, “Protein interface
prediction using graph convolutional networks,” Advances in neural
information processing systems, vol. 30, 2017.

[5] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[6] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for
large-scale machine learning,” in 12th USENIX symposium on operating
systems design and implementation (OSDI 16), 2016, pp. 265–283.

[7] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
graph library: A graph-centric, highly-performant package for graph
neural networks,” arXiv preprint arXiv:1909.01315, 2019.

[8] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[9] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in neural information processing
systems, vol. 30, 2017.

[10] J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph
convolutional networks via importance sampling,” arXiv preprint
arXiv:1801.10247, 2018.

[11] D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu, “Layer-dependent
importance sampling for training deep and large graph convolutional net-
works,” in Advances in neural information processing systems, vol. 32,
2019.

[12] A. Jangda, S. Polisetty, A. Guha, and M. Serafini, “Accelerating graph
sampling for graph machine learning using gpus,” in Proceedings of the
Sixteenth European Conference on Computer Systems, 2021, pp. 311–
326.

[13] J. Yang, D. Tang, X. Song, L. Wang, Q. Yin, R. Chen, W. Yu, and
J. Zhou, “Gnnlab: a factored system for sample-based gnn training
over gpus,” in Proceedings of the Seventeenth European Conference on
Computer Systems, 2022, pp. 417–434.

[14] L. G. Valiant, “A bridging model for parallel computation,” Communi-
cations of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[15] L. A. Adamic and B. A. Huberman, “Power-law distribution of the world
wide web,” science, vol. 287, no. 5461, pp. 2115–2115, 2000.

[16] K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persistent threads
style gpu programming for gpgpu workloads,” in 2012 Innovative
Parallel Computing (InPar), 2012.

[17] W. Wu, X. Shi, L. He, and H. Jin, “Turbognn: Improving the end-
to-end performance for sampling-based gnn training on gpus,” IEEE
Transactions on Computers, vol. 72, no. 9, pp. 2571–2584, 2023.

[18] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, 2017.

[19] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, 2018.

60

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2024 at 14:54:21 UTC from IEEE Xplore.  Restrictions apply. 



[20] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019,
2019.

[21] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on
Mathematical Software (TOMS), vol. 11, no. 1, pp. 37–57, 1985.

[22] S. Pandey, L. Li, A. Hoisie, X. S. Li, and H. Liu, “C-saw: A framework
for graph sampling and random walk on gpus,” in SC20: International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2020, pp. 1–15.

[23] “NeighborSampler,” accessed: Dec.18,2023. [Online]. Available:
https://docs.dgl.ai/generated/dgl.dataloading.NeighborSampler.html

[24] “Open Graph Benchmark: The ogbn-products
dataset,” accessed: Dec.18,2023. [Online]. Available:
https://ogb.stanford.edu/docs/nodeprop/#ogbn-products

[25] “NVIDIA Nsight Systems,” accessed: Dec.18,2023. [Online]. Available:
https://developer.nvidia.com/nsight-systems

[26] “NVIDIA Nsight Compute,” accessed: Dec.18,2023. [Online]. Available:
https://developer.nvidia.com/nsight-compute

[27] H. Yuan, Y. Liu, Y. Zhang, X. Ai, Q. Wang, C. Chen, Y. Gu, and G. Yu,
“Comprehensive evaluation of gnn training systems: A data management
perspective,” arXiv preprint arXiv:2311.13279, 2023.

[28] “CUDA Pro Tip: Write Flexible Kernels with Grid-
Stride Loops,” 2013, accessed: Dec.18,2023. [Online].
Available: https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-
kernels-grid-stride-loops

[29] “Introduction of Neighbor Sampling for GNN
Training,” accessed: Feb.28,2024. [Online]. Available:
https://docs.dgl.ai/en/1.1.x/tutorials/large/L0 neighbor sampling overview.html

[30] “DGL Foreign Function Interface (FFI),” accessed: Feb.28,2024.
[Online]. Available: https://docs.dgl.ai/en/1.1.x/developer/ffi.html

[31] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
SAINT: Graph sampling based inductive learning method,” in Interna-
tional Conference on Learning Representations, 2020.

[32] “Open Graph Benchmark: The ogbn-arxiv
dataset,” accessed: Dec.18,2023. [Online]. Available:
https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv

[33] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of
graph neural network evaluation,” Relational Representation Learning
Workshop, NeurIPS 2018, 2018.

[34] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai,
“Neugraph: Parallel deep neural network computation on large graphs,”
in 2019 USENIX Annual Technical Conference (USENIX ATC), 2019,
pp. 443–458.

[35] Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken, “Improving the
accuracy, scalability, and performance of graph neural networks with
roc,” in Proceedings of Machine Learning and Systems, vol. 2, 2020,
pp. 187–198.

[36] D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan, Z. Zhang,
and G. Karypis, “Distdgl: distributed graph neural network training for
billion-scale graphs,” in 2020 IEEE/ACM 10th Workshop on Irregular
Applications: Architectures and Algorithms (IA3), 2020, pp. 36–44.

[37] S. Gandhi and A. P. Iyer, “P3: Distributed deep graph learning at
scale,” in 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21), 2021, pp. 551–568.

[38] Q. Wang, Y. Zhang, H. Wang, C. Chen, X. Zhang, and G. Yu, “Neu-
tronstar: distributed gnn training with hybrid dependency management,”
in Proceedings of the 2022 International Conference on Management of
Data, 2022, pp. 1301–1315.

[39] G. Karypis and V. Kumar, “Metis: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices,” 1997.

[40] Z. Lin, C. Li, Y. Miao, Y. Liu, and Y. Xu, “Pagraph: Scaling gnn training
on large graphs via computation-aware caching,” in Proceedings of the
11th ACM Symposium on Cloud Computing, 2020, pp. 401–415.

[41] Y. Wang, B. Feng, G. Li, S. Li, L. Deng, Y. Xie, and Y. Ding, “Gn-
nadvisor: An adaptive and efficient runtime system for gnn acceleration
on gpus,” in 15th USENIX symposium on operating systems design and
implementation (OSDI 21), 2021, pp. 515–531.

[42] Q. Fu, Y. Ji, and H. H. Huang, “Tlpgnn: A lightweight two-level
parallelism paradigm for graph neural network computation on gpu,” in
Proceedings of the 31st International Symposium on High-Performance
Parallel and Distributed Computing, 2022, pp. 122–134.

[43] Y. Zhou, J. Leng, Y. Song, S. Lu, M. Wang, C. Li, M. Guo, W. Shen,
Y. Li, W. Lin et al., “ugrapher: High-performance graph operator
computation via unified abstraction for graph neural networks,” in
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2,
2023, pp. 878–891.

[44] Y. Chen, B. Brock, S. Porumbescu, A. Buluc, K. Yelick, and J. Owens,
“Atos: A task-parallel gpu scheduler for graph analytics,” in Proceedings
of the 51st International Conference on Parallel Processing, 2022, pp.
1–11.

[45] Y. Chen, B. Brock, S. Porumbescu, A. Buluç, K. Yelick, and J. D.
Owens, “Scalable irregular parallelism with gpus: getting cpus out of
the way,” in SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2022, pp. 1–
16.

[46] L. Chen, O. Villa, S. Krishnamoorthy, and G. R. Gao, “Dynamic load
balancing on single-and multi-gpu systems,” in 2010 IEEE International
Symposium on Parallel & Distributed Processing (IPDPS). IEEE, 2010,
pp. 1–12.

61

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2024 at 14:54:21 UTC from IEEE Xplore.  Restrictions apply. 


