
A Data-Centric Hardware Accelerator for Efficient
Adaptive Radix Tree

Jin Zhao†, Yu Zhang†, Jun Huang†, Weihang Yin†, Hui Yu†, Hao Qi†, Zixiao Wang†, Longlong Lin§,
Xiaofei Liao†, Hai Jin†

†National Engineering Research Center for Big Data Technology and System, Services Computing Technology and System Lab,
Cluster and Grid Computing Lab, Huazhong University of Science and Technology, Wuhan, China

§College of Computer and Information Science, Southwest University, Chongqing, China
{zjin, zhyu, jun huang, hannyin, huiy, theqihao, zwang62}@hust.edu.cn longlonglin@swu.edu.cn {hjin, xfliao}@hust.edu.cn

Abstract—Adaptive Radix Tree (ART) is a widely used tree
index structure prevalent in various domains such as databases
and key-value stores. Despite many solutions have been proposed
to improve the performance of ART, they still suffer from signif-
icant redundant tree traversals and serious synchronization cost
when concurrently performing the operations (e.g., read/write)
over ART. In this work, we observe that most operations of real-
world workloads tend to target a small subset of ART nodes
frequently, exhibiting strong temporal and spatial similarities
among the operations. Based on this observation, we propose
a data-centric hardware accelerator, called DCART, to efficiently
support the operations over ART. Specifically, DCART proposes a
novel data-centric processing model into the accelerator design to
coalesce the operations associated with the same ART nodes and
adaptively cache the frequently traversed ART nodes and their
search results, thereby fully exploiting the similarities among the
operations for lower tree traversal and synchronization overhead.
We implemented DCART on the Xilinx Alveo U280 FPGA card
and compared it with the cutting-edge solutions, DCART achieves
21.1×-44.2× speedups and 71.1×-148.9× energy savings.

I. INTRODUCTION

Adaptive Radix Tree (ART) [6], [8], [9], [17], [19], [27]
is an efficient tree index structure, which plays a crucial role
in numerous applications like large-scale database systems [7],
[11] and key-value stores [12], [31]. With the wide application
of ART, many optimizations (such as DART [28], Heart [17],
and SMART [11]) are designed to improve the performance of
the operation (e.g., read or write a key-value item) over ART.
However, when concurrently performing the operations over
ART, these solutions still suffer from significant redundant tree
traversals and serious synchronization cost on general-purpose
processors due to the following two problems.

First, different operations usually traverse the same nodes
of ART individually, which incurs significant redundant tree
traversal overhead. Moreover, the irregular and unpredictable
tree traversal cause massive random data accesses, resulting
in poor data locality. It eventually causes most proportion (up
to 90.1%) of the fetched nodes in the on-chip memory to be

This paper is supported by National Key Research and Development
Program of China (No. 2023YFB4503400), NSFC (No. 62402457), and Key
Research and Development Program of Hubei Province (No. 2023BAB078).
This work is also supported by Ant Group through CCF-Ant Research
Fund (No. CCF-AFSG RF20240204). Yu Zhang (zhyu@hust.edu.cn) is the
corresponding author of this paper.

redundant, underutilizing the memory bandwidth significantly.
Second, the same node of ART may be handled by different
operations concurrently, which brings serious synchronization
cost. This is because existing ART design applies a lock-based
algorithm [8], [9] for concurrency control and the real-world
workloads typically perform the operations frequently over a
few common nodes of ART. As a result, the synchronization
cost wastes much execution time (up to 53.6%).

Through analyzing the operation distribution of the real-
world workloads, we have two findings. First, the same nodes
of ART may be frequently handled by different operations
within a short time interval, which shows temporal similarity.
This motivates us to coalesce the processing of the operations
targeting the same nodes to achieve lower synchronization
and tree traversal cost. Second, many operations get involved
with only a small subset of ART nodes, which exhibits spatial
similarity. This suggests that these frequently traversed nodes
and their search results can be cached in the on-chip memory
to further reduce off-chip communications.

Based on the observations, this paper proposes an efficient
data-centric hardware accelerator DCART, which leverages
a novel data-centric Combine-Traverse-Trigger processing
model to effectively handle the operations over ART by fully
exploiting the similarities among them. Specifically, DCART
features specialized hardware pipelines to dynamically com-
bine the operations targeting the same nodes of ART and then
traverse the nodes of ART associated with these combined
operations so as to trigger their processing together. Moreover,
DCART dynamically maintains the search results (i.e., which
are essentially the shortcuts) for the frequently traversed nodes
of ART, enabling multiple operations to reuse these shortcuts
to quickly search their target nodes. In this way, the redundant
tree traversals and synchronization overhead can be effectively
alleviated, ensuring higher utilization of the processing unit
and fewer off-chip communications. To achieve better data
locality, DCART further specializes the memory subsystem to
preferentially resident the frequently traversed nodes of ART
in the on-chip memory for multiple operations.

We have implemented DCART on a Xilinx Alveo U280
FPGA card. Experimental results show DCART outperforms
the cutting-edge ART implementations (i.e., SMART [11] and

20
25

 6
2n

d
A

C
M

/IE
EE

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(D
A

C
) |

 9
79

-8
-3

31
5-

03
04

-8
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

A
C

63
84

9.
20

25
.1

11
32

95
9

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2025 at 07:16:35 UTC from IEEE Xplore. Restrictions apply.

(c) Four types of internal nodes (i.e., N4, N16, N48, and N256) in ART

Header

N4

01 3D EE00

Header

N16

15 … EE … 12

4 (1-byte)
partial keys

4 (8-byte) child
pointers

16 (1-byte)
partial keys

16 (8-byte) child
pointers

Header

N48

01 … FE FF … 00

Header

N256

01 02 … FC FD FE FF00

256 (1-byte) slots
48 (8-byte) child

pointers

256 (8-byte) child pointers

Key3: 541235
(0x00084233)

(a) Traditional Radix Tree

Header

N4

Key3: 541235
(0x00084233)

21 33

(b) Adaptive Radix Tree

Meta

03

Header

N4

02 08Meta

Key2: 541217
(0x00084221)

Key1: 148001
(0x00024221)

Key2: 541217
(0x00084221)

00 08 F2 FF...

00 08 FF

00 42 FF

00 21 33 FF

02

Key1: 148001
(0x00024221)

00 42 FF

00 21 FF

node_A

node_B

node_C

00 08 F2 FF...

Header

N256 00 08 F2 FF...

Header

N256

KV KV KV KVKV

KV

Leaf
Node

Internal
Node

Fig. 1. The illustration of traditional radix tree and ART, where hexadecimal
partial keys are shown to enhance clarity

CuART [6]) running on Intel Xeon CPU and NVIDIA A100
GPU by 35.9×-44.2× and 21.1×-31.2× with 92.7×-148.9×
and 71.1×-126.2× energy savings, respectively.

II. BACKGROUND AND MOTIVATION

A. Adaptive Radix Tree

Adaptive Radix Tree (ART) [7]–[9], [11], [17], [19], [27],
[28] standing out as a widely used tree index structure crafted
to enhance the memory efficiency of traditional radix tree. As
depicted in Figure 1(a) and (b), both the traditional radix tree
and ART organize the segmented keys within the top-down
search path of the tree. Specifically, in traditional radix tree,
each internal node contains an array of child pointers, where
each pointer corresponds to a partial key (i.e., a segment of
bits of the whole key). Note that an internal node in the tradi-
tional radix tree typically reserves space for all 256 potential
partial keys. However, due to the sparse distribution of actual
keys [8], [11], [17], many of these pointers remain empty,
resulting in inefficient memory usage. To resolve this issue, as
shown in Figure 1(b), ART [8], [9] optimizes the traditional
radix tree by reducing tree height with path compression and
introducing four well-designed internal node structures (i.e.,
N4, N16, N48, and N256 as shown in Figure 1(c)), where
each accommodating a distinct number of pointers (4, 16,
48, and 256, respectively). For better memory efficiency, ART
dynamically selects the most suitable internal node structure
according to the actual data distribution.

For each operation (e.g., read or write a key-value item) over
an ART, it needs to traverse the internal nodes of this ART by
performing top-down partial key matching so as to locate the
target node of this operation. When concurrently performing
the operations over ART, a lock-based algorithm (i.e., the
Read-Optimized Write EXclusionn (ROWEX) protocol [9]) is
used to achieve concurrency control of ART. In detail, it adopts
the node-level write locks (e.g., node_C must be locked when
an operation related to Key2 needs to modify it), and any
read or write is executed atomically. Note that if the operation
causes a change in the type of node (e.g., N4 split into N16
when N4 is full), its parent node also needs to be locked.

A
R

T

H
ea

rt

S
M

A
R

T

A
R

T

H
ea

rt

S
M

A
R

T

A
R

T

H
ea

rt

S
M

A
R

T

A
R

T

H
ea

rt

S
M

A
R

T

A
R

T

H
ea

rt

S
M

A
R

T

A
R

T

H
ea

rt

S
M

A
R

T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
x

ec
u

ti
o

n
 t

im
e

b
re

ak
d

o
w

n

IPGEO DICT EA DE RS RD

 Tree traversal Synchronization Others

(a) The breakdown of the execution time normalized to ART

0 20 40 60 80 100
0

50

100

150

200

0

5

10

15

20

25

30

35

IPGEO DICT EA DE RS RD
0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f
th

e
re

d
u

n
d

an
t

tr
av

er
se

d
 n

o
d

e

(b) Ratio of the redundant traversal
nodes to all traversed nodes

 ART Heart SMART

IPGEO DICT EA DE RS RD
0.0

0.1

0.2

0.3

0.4

0.5

R
at

io
 o

f
th

e
u

se
fu

l
d

at
a

in
 c

ac
h

e

(c) Average ratio of the useful
 data in the cache line

 ART Heart SMART

256 1K 4K 16K 64K
0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f
sy

n
ch

ro
n

iz
at

io
n

(d) Ratio of the sychronization time
for different batch size

 ART Heart SMART
P99Latency ART Heart SMART

(e) The throughput and P99 latency

of different write ratio

T
h

ro
u

g
h

p
u

t
(M

o
p

s/
s)

P
9

9
 L

at
en

cy
 (

u
s)

Throughput ART Heart SMART

Fig. 2. Performance of existing solutions over different workloads

B. Challenges of Existing Solutions
Although many solutions [6]–[9], [11], [17], [19], [27],

[28] have been developed to enhance the performance of the
operations (e.g., read or write a key-value item) over ART, they
still suffer from significant redundant tree traversal and serious
synchronization overhead when concurrently processing the
operations over ART. These unique challenges lead to inef-
ficient utilization of the cores and memory bandwidth of the
general-purpose processors. To demonstrate these problems,
we evaluated three state-of-the-art ART implementations (i.e.,
ART [9], Heart [17], and SMART [11]) running on Intel
Xeon CPU. Note that the details of the platform and bench-
marks used in this evaluation are described in Section IV-A.
Figure 2(a) shows that, although SMART outperforms other
under all circumstances, the majority of execution time for
the processing of operations on SMART (more than 95.82%)
is still consumed by tree traversal and synchronization. We
illustrate the reasons for the above inefficiency as follows.

Challenge 1: Massive redundant tree traversal cost incurs
the underutilization of memory bandwidth. Different opera-
tions may need to individually traverse the same nodes of ART,
incurring significant redundant tree traversal cost. As depicted
in Figure 1(b), when processing two operations associated
with Key2 and Key3, respectively, each operation needs to
individually conduct partial key matching along the nodes
node_A→node_B→node_C. Such duplicate tree traversal
incurs many redundant off-chip communications (e.g., the
accesses to node_A, node_B, and node_C). As shown in
Figure 2(b), more than 77.8% of traversed nodes are redundant
when handling the operations over SMART, while this ratio

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2025 at 07:16:35 UTC from IEEE Xplore. Restrictions apply.

0 x 3 1 0 x 6 3 0 x 9 5 0 x C 7 0 x F F0 x 0 00
5 0 0 0

1 0 0 0 0
1 5 0 0 0
2 0 0 0 0
2 5 0 0 0

Nu
mb

er
of

ope
rat

ion
s I P G E O

D I C T

E A

Nu
mb

er
of

ope
rat

ion
s

Nu
mb

er
of

ope
rat

ion
s

0 x 0 0 0 x 6 3 0 x 6 D 0 x 7 7 0 x F F0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0

0 x 0 0 0 x 6 3 0 x 6 D 0 x 7 7 0 x F F
0

2 0 0 0 0
4 0 0 0 0
6 0 0 0 0
8 0 0 0 0

Fig. 3. Operation distribution of real-world workloads, where the prefixes
(ranging from 0x00 to 0xFF) of the keys are listed along the horizontal axis
and the number of operations led by different prefixes are shown vertically

can be even as high as 86.1% and 82.5% for ART and Heart,
respectively. Besides, massive irregular and unpredictable data
accesses during the tree traversal cause significant random data
accesses, incurring poor data locality. Note that the partial
key and child pointer are typically sized of 1 and 8 bytes,
respectively, significantly smaller than the 64-byte cachelines
of general-purpose processors. Thus, only a small portion of
the data loaded into the cache line (20.2% on average in Fig-
ure 2(c)) is useful. This eventually results in many superfluous
fragmented off-chip communications, underutilizing the on-
chip memory and memory bandwidth significantly.

Challenge 2: The concurrency control of ART suffers from
serious synchronization overhead. Existing ART implementa-
tions typically use lock-based algorithms [6]–[9], [19], [27],
[28] to achieve concurrency control, which incurs serious syn-
chronization overhead among different operations over ART.
As depicted in Figure 1(b), when the operation associated with
Key2 has acquired a lock for the node (e.g., node_C) of
ART, the operation associated with Key3 can be conducted
only when the operation associated with Key2 has been
completed and released the lock. Although several works (e.g.,
Heart [17] and SMART [11]) endeavor to alleviate the node-
level lock contention using the atomic primitive Compare-
And-Switch (CAS), atomic operations are still very inefficient.
This is because the operations over ART suffer from poor
data locality, which leads to frequent cache misses, whereas a
CAS operation on an Intel processor experiences a slowdown
of more than 15 times when data resides in RAM compared
to when it resides in L1 cache [21]. As shown in Figure 2(d),
when the number of operations increases in the real-world
workload IPGEO, the ratio of the execution time associated
with concurrency control to the total execution time increases
from 16.2% to 62.1% over Heart and SMART, while this ratio
increases from 24.1% to 71.3% over ART. In addition, from
Figure 2(e), we can observe that the performance deteriorates
rapidly when the ratio of write operations increases in IPGEO
(i.e., more lock acquirement and release are required).

C. Similarities among the Operations over ART
Figure 3 describes the statistical studies on the operation

distribution of three real-world workloads. We observe that
there are strong spatial and temporal similarities among the

operations over ART. It provides opportunities to address the
limitations of existing architectures and enhance the perfor-
mance of the operations over ART.

Observation 1: The same nodes of ART may be frequently
handed by different operations within a short period of time,
which exhibits the temporal similarity. Figure 3 shows that
the nodes corresponding to the keys with the prefix 0x67 are
traversed and handled by over 24,000 operations for IPGEO.
This motivates us to propose a novel data-centric Combine-
Traverse-Trigger (CTT) processing model to efficiently coa-
lesce the operations over ART by fully exploiting the temporal
similarity. This model first combines the operations targeting
the same nodes of ART according to the prefixes of their keys.
It then traverses the nodes of ART to search the target nodes of
these combined operations and finally triggers the processing
of these operations together. Thus, each node of ART needs
to be traversed only once to drive the processing of multiple
operations, and the concurrent operations associated with this
node can be serialized to naturally alleviate synchronization
overhead. This is fundamentally different from the operation-
centric processing model used in existing solutions [6]–[9],
[11], [17], [19], [27], [28] that launch each operation to
individually perform the tree traversal over ART to retrieve
and atomically handle its target nodes. Take Figure 1(b) as
an example, our proposed CTT processing model first com-
bines the operations associated with Key2 and Key3 because
their keys have same prefix, and then traverses the nodes
of ART through conducting the partial key matching along
node_A→node_B→ node_C. After that, the combined
operations will be triggered to perform together without the
synchronization of node_C when these operations need to
modify node_C. Besides, the duplicate partial key matching
from node_A to node_C can be eliminated by coalescing the
same tree traversals, achieving lower tree traversal overhead.

Observation 2: Many operations involve only a small frac-
tion of nodes within ART, which exhibits the spatial similarity.
Figure 3 shows that more than 96.65% of tree traversals is
responsible for accessing only 5% of the nodes in ART. The
results depict that the node traversal distribution is usually
skewed. This prompts us to enhance the performance of our
proposed data-centric CTT processing model via the following
aspects. First, the frequently traversed nodes (denoted as the
high-value nodes) can be preferentially resident in the on-chip
memory, efficiently exploiting the spatial similarity among the
operations for fewer off-chip communications. Second, the
partial key matching results associated with these nodes (e.g.,
the prefix of the key and the address of the corresponding node
such as <0x000842, address of node_C> in Figure 1(b),
which is essentially a shortcut) can be cached to be directly
reused by other operations that need to handle them (i.e., the
operations that need to handle node_C), further reducing the
tree traversal overhead.

Challenges: Although our proposed data-centric CTT pro-
cessing model ensures much lower synchronization cost and
fewer tree traversals, its software-only implementation suffers
from high runtime overhead (see Section IV-B) due to the

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2025 at 07:16:35 UTC from IEEE Xplore. Restrictions apply.

Off-chip Memory

Control Unit

Prefix-based
Combining Unit (PCU)

Dispatcher

On-chip
Memory Scan_buffer



Bucket_buffer Shortcut_buffer Tree_buffer

Shortcut-based Operating Unit (SOU)

Fig. 4. Architecture of DCART

following reasons. First, it requires expensive runtime cost to
dynamically coalesce the operations and maintain the shortcuts
on the fly, which may impede the performance improvement
brought by exploiting the similarities among the operations
over ART. Second, the tree traversal involves data-dependent
branches, which induces low instruction-level parallelism. To
overcome these challenges, we present a data-centric hardware
accelerator DCART, which customizes specialized hardware
designs to efficiently handle the operations over ART.

III. DCART ARCHITECTURE

A. DCART Overview
Figure 4 depicts the architecture of DCART, which con-

tains three key hardware units (i..e, Prefix-based Combining
Unit (PCU), Dispatcher, and Shortcut-based Operating Unit
(SOU)) and on-chip buffers. Specifically, the PCU is employed
to combine the operations targeting the same ART nodes by
assigning the operations into disjoint buckets based on the
prefixes of their keys. The Dispatcher is used to dispatch these
buckets to different SOUs for parallel processing, in which
the operations targeting the same nodes are only handled by a
single SOU, alleviating synchronization overhead. Each SOU
is employed to efficiently handle the combined operations in
each bucket and also maintain the shortcuts to eliminate the
duplicate tree traversal cost. On-chip memory is composed
of several buffers to cache different types of data and also
isolate the accesses to these different data (e.g., tree structure
and operations), efficiently reducing off-chip communications.
To fully exploit the spatial similarity of the operations over the
ART, it also adaptively caches the frequently handled nodes
for multiple operations, avoiding the data thrashing of them.
B. Prefix-based Operation Combining

To alleviate the lock contention among the concurrent
operations over ART, the PCU sequentially scans the keys
of the operations and dynamically assigns them into different
disjoint buckets according to the prefixes of these keys. As
shown in Figure 5, the PCU performs three stages as a
pipeline to efficiently achieve the operation combining. Note
that sixteen tables are created in the off-chip memory to
store the combined operations for different buckets, where
each table (e.g., Bucket Tablei) is specified to a particular
bucket (i.e., the ith bucket) using a label (defined by the
prefix). When the concurrent operations are arrived, at the
Scan Operation stage, it sequentially obtains the key of each
operation. Then, the Get Prefix stage calculates the specified
prefix (e.g., Prefixi) of this key, where the first 8 bits of
the key are used as the specified prefix by default. After
that, at the Combine Operation stage, it assigns this operation
into the corresponding Bucket Table by matching Prefixi with

Combine_
Operation

Scan_
Operation

Get_
Prefix

Scan_buffer Bucket_buffer

PCU

Dispatcher

Generate_
Shortcut

Trigger_
Operation

Traverse_
Tree

Shortcut_bufferTree_buffer

SOU
Index_

Shortcut

Fig. 5. Microarchitecture of DCART, where blue solid lines and green solid
lines denote data flow and on-chip memory transfers, respectively

Batch #i

combining

Batch #i

operating

Batch #i+1

combining

Batch #i+1

operating

Batch #i+2

combining

Batch #i+2

operating

PCU

SOU

Time

…

…

Fig. 6. The overlap between PCU and SOU

the labels of Bucket Tables and then sets this operation as
combined. In this way, the operations that target the same
nodes are combined into the same bucket. It enables the
Dispatcher to dispatch the operations that target the same node
to be handled by only a single SOU, avoiding the acquirement
of locks to perform synchronization for concurrent control.
C. Shortcut-based Operating

When a SOU is dispatched with a bucket of operations, this
SOU sequentially retrieves an operation from this bucket and
searches the target node of this operation by traversing the
tree or using the shortcuts (to be introduced later), efficiently
conducting the operations that target the same node together
with lower tree search overhead. Note that a hash table, i.e.,
Shortcut Table, is created in the off-chip memory to store
the partial key matching results to be reused by multiple
operations, avoiding significant redundant tree traversal over-
head. Each entry of Shortcut Table is the form of <Key_ID,
Address_Target_Node, Address_Parent_Node>.

Specifically, as shown in Figure 5, each SOU contains
four stages, which are conducted as a pipeline. At the In-
dex Shortcut stage, the SOU pops an operation from the
assigned bucket and obtains the key (e.g., Keyx) of this
operation. Then, it uses the Keyx to obtain the addresses
of the target node (e.g., Node_X) and its parent node (e.g.,
Node_Y) according to the Shortcut Table. If the correspond-
ing addresses can be obtained from the Shortcut Table (e.g.,
Node_X has been handled by another operation previously),
the Traverse Tree stage will directly use these addresses to
fetch Node_X and Node_Y from the tree structure (i.e.,
the ART), avoiding the tree traversal. Otherwise, the Tra-
verse Tree stage will use Keyx to obtain Node_X and
Node_Y through performing top-down partial key matching
over the tree. At the Trigger Operation stage, the SOU triggers
all retrieved operation (e.g., read or write) on the target node to
be performed together. If Node_X and Node_Y are obtained
by traversing the tree, the Generate Shortcut stage will gen-
erate a shortcut associated with Keyx, i.e., creating an entry
(i.e., <Keyx, Address_Node_X, Address_Node_Y>) in
Shortcut Table. Note that the corresponding entry in Short-
cut Table needs to be updated when this operation causes a
change in the type of Node_X. As the operations that target
the same node being coalesced, the SOU typically obtains the

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2025 at 07:16:35 UTC from IEEE Xplore. Restrictions apply.

target nodes of the operations directly based on the maintained
shortcuts and also achieves better data locality.
D. Overlap of Combining and Operating

The combining of the operations needs to assign them into
different disjoint buckets on the fly, which introduces extra
runtime cost. Fortunately, the interleaving between combining
and operating for each operation batch provides the potential
opportunity to hide the operation combining overhead. Thus,
we can sequentially divide the arrived operations into a series
of batches. As shown in Figure 6, when the ith batch of
operations has been handled by PCU, the Dispatcher will
assign the combined operations associated with the ith batch
to be handled by SOUs. In the meantime, the PCU starts
combining the operations of the (i + 1)th batch. By such
means, the overheads of the operation combining can be
usually hidden for better performance.
E. Value-aware Memory Hierarchy

To efficiently access the ART nodes, arrived operations,
Bucket Tables, and Shortcut Table, as shown in Figure 4, four
on-chip buffers, i.e., Tree buffer, Scan buffer, Bucket buffer,
and Shortcut buffer, are employed to cache these data, re-
spectively. However, the high-value nodes (introduced in Sec-
tion II-C) may be evicted from the Shortcut buffer due to
the irregular tree traversal over ART. The access to the tree
structure typically accounts for the most portion of all data
accesses. Therefore, we design a value-aware data manage-
ment strategy to efficiently manage the Tree buffer, while
DCART uses LRU [4] to manage the other buffers by default.
In detail, for the management of the Tree buffer, DCART
uses the values of the nodes to determine the victims. Note
that a node (e.g., Node_X) will be handed more times when
the corresponding bucket owns more operations, thus we use
the number of the operations in the corresponding bucket to
approximate the value of this node (i.e., Valuex), which can be
obtained after the operation coalescing. When a node Node_X
is requested, if the Tree buffer is not full, Node_X will be
directly cached in the Tree buffer. Otherwise, DCART will
evict the node with the lowest value (i.e., Valuelow) from
the Tree buffer and cache Node_X in the Tree buffer when
Valuex is greater than Valuelow. In this way, DCART can
effectively prevent cache thrashing for high-value nodes (i.e.,
frequently traversed nodes), ensuring better data locality.

IV. EVALUATION

A. Experiment Setup
DCART Settings. We implement DCART on the Xilinx

Alveo U280 FPGA card, which is equipped with the XCU280
FPGA chip. The FPGA provides 1.3 M LUTs, 2.6 M Registers,
9 M BRAM resources, and 8 GB HBM. DCART has 16 SOUs,
and we implement the on-chip memory of DCART using
the BRAM resources. More parameter details of DCART are
depicted in Table I. We use Xilinx Vivado 2019.1 to obtain the
clock rate for DCART and conservatively use 230MHz in our
experiments. Besides, we also implement our data-centric CTT
processing model on a machine equipped with two 48-core
Intel Xeon Platinum 8468 processors and 1024 GB DRAM.

TABLE I
PARAMETER DETAILS OF DCART

Compute 1×PCU, 1×Dispatcher, 16×SOUs

On-chip memory Scan buffer (512 KB), Bucket buffer (2 MB),
Shortcut buffer (128 KB), Tree buffer (4 MB)

The CPU version (i.e., the software-only implementation of
our processing model) is called DCART-C.

Workloads. We use three real-world workloads (i.e., IP
address record by GeoLite2-Country (IPGEO)1, DICT2, and
E-mail Addresses (EA)3) and three synthesized workloads [9]
with 50M dense 8-byte integer keys (DE), 50M random
sparse 8-byte integers keys (RS), and 50M random dense 8-
byte integers keys (RD), respectively. For each workload, the
operations consist of 50% read and 50% write by default.

Baselines. We compare DCART with two cutting-edge
CPU-based tree indexes (i.e., ART [9] and SMART [11]) and a
state-of-the-art GPU-based tree index (i.e., CuART [6]), where
ART and SMART are used as the CPU baselines and CuART
is used as the GPU baseline. Note that SMART is designed for
disaggregated memory, thus we port them to shared-memory
by re-implementing them from scratch. All experiments run on
a machine configured with two 48-core Intel Xeon Platinum
8468 processors, 1024 GB DRAM, an NVIDIA A100 GPU,
and a Xilinx Alveo U280 FPGA. Like existing solutions [1],
[3], [22], [26], we employ CPU Energy Meter [15], nvidia-
smi [18], and xbutil [25] to measure the energy consumption
of the CPU-based solutions (i.e., ART [9], SMART [11], and
DCART-C), the GPU-based solution (i.e., CuART [6]), and
the FPGA-based solution (i.e., DCART), respectively.

B. Overall Performance
Lock Contentions. Figure 7 evaluates the number of lock

contentions induced by different solutions. It shows that the
lock contentions induced by DCART-C and DCART are only
3.2%-19.7% of that by other solutions. This is because our
data-centric CTT processing model only needs to acquire a
single lock for multiple operations that need to handle the same
node by efficiently coalescing these operations, alleviating
massive lock contentions for lower synchronization overhead.

Partial Key Matches. Figure 8 shows the number of partial
key matches performed by different solutions. It depicts that
the number of partial key matches of DCART-C and DCART
are only 3.2%-5.7%, 6.5%-14.3%, and 8.8%-15.9%, of ART,
SMART, and CuART, respectively. The reasons are twofold.
First, different operations can share the common tree traversals
through combining these operations according to their prefixes.
Second, the shortcuts of the frequently traversed nodes can be
reused by multiple operations to directly search their target
nodes, further reducing the tree traversal overhead.

Performance. Figure 9 evaluates the execution time of
different solutions. We can find that DCART-C only slightly
outperforms ART, SMART, and CuART, although our pro-
cessing model can efficiently reduce redundant tree traversals

1https://github.com/analogic/ipgeo#dbsql
2https://github.com/dwyl/english-words
3https://archive.org/details/300MillionEmailDatabase

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2025 at 07:16:35 UTC from IEEE Xplore. Restrictions apply.

I P G E O D I C T E A D E R S R D0
1 0
2 0
3 0

Nu
mb

er
of

loc
k c

ont
ent

ion
s

A R T S M A R T C u A R T D C A R T - C D C A R T

Fig. 7. Number of lock contentions
I P G E O D I C T E A D E R S R D0

1 0
2 0
3 0

Nu
mb

er
of

par
tial

 ke
y m

atc
hes

A R T S M A R T C u A R T D C A R T - C D C A R T

Fig. 8. Number of partial key matches
I P G E O D I C T E A D E R S R D1 0 0

1 0 1

1 0 2

No
rm

aliz
ed

tim
e

A R T S M A R T C u A R T D C A R T - C D C A R T

Fig. 9. Normalized execution time

0 2 0 4 0 6 0 3 0 0 4 5 0 6 0 00
4 0
8 0

1 2 0
1 6 0

0 1 5 3 0 4 5 2 4 0 3 2 0 4 0 00
4 0
8 0

1 2 0
1 6 0
2 0 0

0 1 0 2 0 3 0 2 0 0 3 0 0 4 0 00
4 0
8 0

1 2 0
1 6 0
2 0 0

P9
9 L

ate
ncy

 (u
s)

T h r o u g h p u t (M o p s / s)

 A R T S M A R T C u A R T D C A R T - C D C A R T

I P G E O D I C T E A

T h r o u g h p u t (M o p s / s) T h r o u g h p u t (M o p s / s)
Fig. 10. The throughput-latency curves under different real-world workloads

I P G E O D I C T E A D E R S R D1 0 0

1 0 1

1 0 2

En
erg

y c
ons

um
pti

on

A R T S M A R T C u A R T D C A R T - C D C A R T

Fig. 11. Normalized energy consumption

2 5 6 1 K 4 K 1 6 K 6 4 K 2 5 6 K1 0 0

1 0 1

1 0 2

No
rm

aliz
ed

tim
e

A R T S M A R T C u A R T D C A R T - C D C A R T

(a) N u m b e r o f o p e r a t i o n s (b) D i f f e r e n t w o r k l o a d sA B C D E1 0 0

1 0 1

1 0 2

Fig. 12. Sensitivity studies

and synchronization overhead when handling the operations
over ART. This is because DCART-C requires high runtime
overhead to dynamically combine the operations, maintain
the shortcuts, and irregularly traverse the tree structure on
the fly. This impedes the overall efficiency of our process-
ing model. Different from DCART-C, DCART can achieve
123.8×-151.7×, 35.9×-44.2×, and 21.1×-31.2× performance
improvements compared with ART, SMART, and CuART, re-
spectively. The reasons are manifold. First, DCART can reduce
the runtime cost arising from our processing model because
of its sophisticated hardware designs. Second, DCART can
preferentially resident the frequently traversed ART nodes on
the on-chip memory, achieving better data locality. Figure 10
evaluates the throughput-latency curves of different solutions
with three real-world workloads, using various numbers of the
operations. It shows that DCART achieves lower P99 latency
and higher throughput in comparison with other solutions.

Energy Savings. Figure 11 shows that DCART reduces the
energy consumption of ART, SMART, CuART, and DCART-
C by 315.1×-493.5×, 92.7×-148.9×, 71.1×-126.2×, and
48.1×-97.6×, respectively.
C. Sensitivity Studies

Figure 12(a) evaluates the performance of different solutions
when handling IPGEO with different number of concurrent
operations. It shows that DCART achieves better performance
as the number of operations increases. This is because DCART
can efficiently coalesce the operations to alleviate more lock
contention and tree traversal cost. Figure 12(b) evaluates the
performance of different solutions with various workloads of
IPGEO, where the workloads contain A (100% read), B (75%
read, 25% write), C (50% read, 50% write), D (25% read,
75% write), and E (100% write). The results show that better

performance improvement can be obtained as the ratio of write
increases (which means more lock contention).

V. RELATED WORK

Two categories of index structures (i.e., hash indexes and
tree-based indexes) are most widely used today for databases.

Hash Indexes. Hash indexes [2], [14], [16], [32] are flat
data structures that are able to support fast point access within
constant lookup time complexity, i.e., O(1). However, because
hash tables scatter the keys randomly, they are unable to
support range queries efficiently.

Tree-based Indexes. Tree-based indexes [10], [20], [29],
[30] are critical for many applications requiring range queries,
and most previous databases typically apply the variants of
B+tree [5], [13], [23], [24] to build range indexes. However,
B+tree suffers from write amplification. In comparison with it,
ART [8], [9] has smaller write amplification because it does
not hold the entire keys in its internal nodes. Recently, many
optimizations [7], [12], [19], [27], [31] have been proposed for
ART. DART [28] introduces a triplet-based search mechanism
to guarantee its scalability. Heart [17] proposes a PM-friendly
node structure and a CAS-based concurrency control method
to reduce the high PM overhead and improve scalability.
SMART [11] is proposed to achieve efficient ART for disag-
gregated memory. To further improve the performance of ART,
CuART [6] offloads the read and write operations onto GPUs.
However, these solutions still suffer from serious redundant
tree traversals and synchronization cost when concurrently
performing the operations over ART. In contrast, DCART can
effectively overcome these challenges by fully exploiting the
temporal and spatial similarities among these operations.

VI. CONCLUSION

This paper proposes a novel data-centric hardware accel-
erator DCART to enhance the efficiency of operations over
ART. By coalescing the operations targeting the same ART
nodes and adaptively caching the frequently traversed ART
nodes and their search results, DCART significantly reduces
the synchronization cost and off-chip communications, achiev-
ing high energy efficiency. Compared to the state-of-the-art
solutions, i.e., SMART [11] and CuART [6], DCART gains
21.1×-44.2× speedups with 71.1×-148.9× energy savings.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2025 at 07:16:35 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] X. Chen, Y. Chen, F. Cheng, H. Tan, B. He, and W. Wong, “Regraph:
Scaling graph processing on hbm-enabled fpgas with heterogeneous
pipelines,” in Proceedings of the 55th IEEE/ACM International Sym-
posium on Microarchitecture, 2022, pp. 1342–1358.

[2] D. Hu, Z. Chen, J. Wu, J. Sun, and H. Chen, “Persistent memory
hash indexes: an experimental evaluation,” Proceedings of the VLDB
Endowment, vol. 14, no. 5, 2021.

[3] M. Jay, V. Ostapenco, L. Lefèvre, D. Trystram, A. Orgerie, and B. Fichel,
“An experimental comparison of software-based power meters: focus on
CPU and GPU,” in Proceedings of the 23rd IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing, 2023, pp. 106–
118.

[4] D. A. Jiménez, “Insertion and promotion for tree-based pseudolru last-
level caches,” in Proceedings of the 46th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2013, pp. 284–296.

[5] W.-H. Kim, M. K. Ramanathan, X. Fu, S. Kashyap, and C. Min,
“PACTree: a high performance persistent range index using pac guide-
lines,” in Proceedings of the 28th ACM SIGOPS Symposium on Oper-
ating Systems Principles, 2021, pp. 424–439.

[6] M. Koppehel, T. Groth, S. Groppe, and T. Pionteck, “Cuart - a cuda-
based, scalable radix-tree lookup and update engine,” in Proceedings
of the 50th International Conference on Parallel Processing, 2021, pp.
1–10.

[7] S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh, “WORT:
write optimal radix tree for persistent memory storage systems,” in
Proceedings of the 15th USENIX Conference on File and Storage
Technologies, 2017, pp. 257–270.

[8] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: Artful
indexing for main-memory databases,” in Proceedings of the 29th IEEE
International Conference on Data Engineering, 2013, pp. 38–49.

[9] V. Leis, F. Scheibner, A. Kemper, and T. Neumann, “The ART of
practical synchronization,” in Proceedings of the 12th International
Workshop on Data Management on New Hardware, 2016, pp. 3:1–3:8.

[10] Y. Li, B. He, J. Yang, Q. Luo, and K. Yi, “Tree indexing on solid state
drives,” Proceedings of the VLDB Endowment, vol. 3, no. 1, pp. 1195–
1206, 2010.

[11] X. Luo, P. Zuo, J. Shen, J. Gu, X. Wang, M. R. Lyu, and Y. Zhou,
“SMART: a high-performance adaptive radix tree for disaggregated
memory,” in Proceedings of the 17th USENIX Symposium on Operating
Systems Design and Implementation, 2023, pp. 553–571.

[12] S. Ma, K. Chen, S. Chen, M. Liu, J. Zhu, H. Kang, and Y. Wu,
“Roart: Range-query optimized persistent art,” in Proceedings of the
19th USENIX Conference on File and Storage Technologies, 2021, pp.
1–16.

[13] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore
key-value storage,” in Proceedings of the 2012 European Conference on
Computer Systems, 2012, pp. 183–196.

[14] A. Mathew and C. Min, “Hydralist: A scalable in-memory index using
asynchronous updates and partial replication,” in Proceedings of the
VLDB Endowment, 2020, pp. 1332–1345.

[15] L. Munich, “CPU energy meter,” 2021. [Online]. Available:
https://github.com/sosy-lab/cpu-energy-meter

[16] M. Nam, H. Cha, Y. ri Choi, S. H. Noh, and B. Nam, “Write-optimized
dynamic hashing for persistent memory,” in Proceedings of the 17th
USENIX Conference on File and Storage Technologies, 2019, pp. 31–
44.

[17] L. Nie, S. Zheng, B. Zhang, J. Xu, and L. Huang, “Heart: a scalable,
high-performance art for persistent memory,” in Proceedings of the 41st
IEEE International Conference on Computer Design, 2023, pp. 487–
490.

[18] NVIDIA, “Nvidia system management interface,” 2023. [Online]. Avail-
able: https://developer.nvidia.com/nvidia-system-management-interface

[19] W. Pan, T. Xie, and X. Song, “HART: A concurrent hash-assisted radix
tree for DRAM-PM hybrid memory systems,” in Proceedings of the 2019
IEEE International Parallel and Distributed Processing Symposium,
2019, pp. 921–931.

[20] K. Ren, Y. Guo, J. Li, X. Jia, C. Wang, Y. Zhou, S. Wang, N. Cao,
and F. Li, “Hybridx: New hybrid index for volume-hiding range queries
in data outsourcing services,” in Proceedings of the 40th IEEE Interna-
tional Conference on Distributed Computing Systems, 2020, pp. 23–33.

[21] H. Schweizer, M. Besta, and T. Hoefler, “Evaluating the cost of atomic
operations on modern architectures,” in Proceedings of the 2015 Inter-
national Conference on Parallel Architectures and Compilation, 2015,
pp. 445–456.

[22] L. Song, Y. Chi, L. Guo, and J. Cong, “Serpens: a high bandwidth
memory based accelerator for general-purpose sparse matrix-vector mul-
tiplication,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, 2022, pp. 211–216.

[23] Q. Wang, Y. Lu, and J. Shu, “Sherman: a write-optimized distributed
b+tree index on disaggregated memory,” in Proceedings of the 2022
International Conference on Management of Data, 2022, pp. 1033–1048.

[24] Z. Wang, A. Pavlo, H. Lim, V. Leis, H. Zhang, M. Kaminsky, and
D. G. Andersen, “Building a bw-tree takes more than just buzz words,”
in Proceedings of the 2018 International Conference on Management of
Data, 2018, pp. 473–488.

[25] Xilinx, “Vitis unified software development plat-
form 2020.2 documentation,” 2020. [Online]. Available:
https://www.xilinx.com/html docs/xilinx2020 2/vitis doc/index.html

[26] Z. Yang, K. Adamek, and W. Armour, “Accurate and convenient energy
measurements for gpus: A detailed study of nvidia gpu’s built-in power
sensor,” in Proceedings of the 2024 International Conference for High
Performance Computing, Networking, Storage and Analysis, 2024, pp.
307–323.

[27] J. Zhang, Y. Luo, P. Jin, and S. Wan, “Optimizing adaptive radix trees
for nvm-based hybrid memory architecture,” in Proceedings of the 2020
IEEE International Conference on Big Data, 2020, pp. 5867–5869.

[28] W. Zhang, H. Tang, S. Byna, and Y. Chen, “DART: distributed adaptive
radix tree for efficient affix-based keyword search on hpc systems,” in
Proceedings of the 27th International Conference on Parallel Architec-
tures and Compilation Techniques, 2018, pp. 24:1–24:12.

[29] Y. Zheng, R. Lu, Y. Guan, J. Shao, and H. Zhu, “Towards practical
and privacy-preserving multi-dimensional range query over cloud,” IEEE
Transactions on Dependable and Secure Computing, vol. 19, no. 5, pp.
3478–3493, 2022.

[30] W. Zhong, C. Chen, X. Wu, and S. Jiang, “REMIX: efficient range query
for lsm-trees,” in Proceedings of the 19th USENIX Conference on File
and Storage Technologies, 2021, pp. 51–64.

[31] T. Ziegler, S. T. Vani, C. Binnig, R. Fonseca, and T. Kraska, “Designing
distributed tree-based index structures for fast rdma capable networks,”
Proceedings of the 2019 International Conference on Management of
Data, pp. 56–67, 2020.

[32] P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-performance
hashing index scheme for persistent memory,” in Proceedings of the 13th
USENIX Symposium on Operating Systems Design and Implementation,
2018, pp. 461–476.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 13,2025 at 07:16:35 UTC from IEEE Xplore. Restrictions apply.

