
An Eficient ReRAM-based Accelerator for Asynchronous Iterative

Graph Processing

JIN ZHAO, Huazhong University of Science and Technology, Wuhan, China

YU ZHANG, School of Computer Science and Technology, Huazhong University of Science and Technology,

Wuhan, China

DONGHAO HE, Huazhong University of Science and Technology, Wuhan, China

QIKUN LI, HUST, Wuhan, China

WEIHANG YIN, Huazhong University of Science and Technology, Wuhan, China

HUI YU, Huazhong University of Science and Technology, Wuhan, China

HAO QI, Huazhong University of Science and Technology, Wuhan, China

XIAOFEI LIAO, Huazhong University of Science and Technology, Wuhan, China

HAI JIN, School of computer science and technology, Huazhong University of Science and Technology, Services

Computing Technology and System Laboratory / Cluster and Grid Computing Laboratory, Wu hanwu, China

HAIKUN LIU, School of Computer Science and Technology, Huazhong University of Science and Technology,

Wuhan, China

LINCHEN YU, Huazhong University of Science and Technology, Wuhan, China

ZHANG ZHAN, Zhejiang Lab, Hangzhou, China

Graph processing has become a central concern for many real-world applications and is well-known for its low compute-to-

communication ratios and poor data locality. By integrating computing logic into memory, resistive random access memory

(ReRAM) tackles the demand for high memory bandwidth in graph processing. Despite the years’ research eforts, existing

ReRAM-based graph processing approaches still face the challenges of redundant computation overhead. It is because the vertices

of many subgraphs are inefectively and repeatedly processed over the ReRAM crossbars for lots of iterations so as to update

their states according to the vertices of other subgraphs regardless of the dependencies among the subgraphs. In this paper,

we propose ASGraph, a dependency-aware ReRAM-based graph processing accelerator that overcomes the aforementioned

performance bottlenecks. Speciically, ASGraph dynamically constructs the subgraph based on the dependencies between

vertices’ states and then detects constructed subgraph that owns high value (it is likely that it has accumulated many state
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propagations from its neighbors and is able to afect more other neighbors) to be preferentially processed. In this way, it makes

the vertex states propagate along the dependencies between vertices as much as possible to reduce the redundant computation.

Besides, ASGraph employs a hybrid processing scheme to accelerate the state propagations of the tightly connected subgraph,

thereby minimizing the redundant computations. Experimental results show that ASGraph achieves 25.5× and 4.8× speedup

and 70.8× and 2.2× energy saving on average compared with the state-of-the-art ReRAM-based graph processing accelerators,

i.e., GraphR and GaaS-X, respectively.

CCS Concepts: · Computer systems organization→ Architectures; · Hardware→Memory and dense storage.

Additional Key Words and Phrases: processing-in-memory, ReRAM, asynchronous graph processing, convergence speed

1 Introduction

Graph processing is widely used to capture complex relationships between real-world objects and plays a crucial
role in various domains, including natural language processing [4, 10, 27], social network analysis [6, 8], machine
learning [14, 25, 31, 56] and recommendation systems [23, 40, 46]. Despite the availability of many hardware
accelerators [7, 17, 28, 35, 36, 50, 55, 64, 66] designed to enhance high-performance graph processing, they still fall
short in efectively addressing the memory bottleneck inherent in graph processing because of their heavy random
accesses, low compute-to-communication ratio, and high memory bandwidth requirements. In contrast to these
traditional von Neumann architecture-based accelerators, several resistive random access memory (ReRAM)-based
accelerators [5, 11, 42, 44, 69, 70] are recently designed to alleviate the memory bottleneck of graph processing by
harnessing the massive parallel in-situ computation capability ofered by ReRAM. To support graph processing,
these ReRAM-based solutions typically organize the ReRAM cells in a crossbar architecture to enable eicient
graph operations through performing sparse matrix-vector multiplication (SpMV) over the ReRAM crossbar, where
the graph is typically split into a series of small size matrix-formatted subgraphs to match the crossbar size and
alleviate the problem of the processing of the non-existent edges1. However, existing ReRAM-based solutions
still encounter the following problem.
The new vertex states within subgraphs are irregularly propagated to the vertices in other subgraphs, re-

sulting in signiicant redundant computation overhead. This ineiciency greatly limits the exploitation of the
extensive parallelism capabilities inherent in the ReRAM-based architecture. Speciically, existing ReRAM-based
solutions [11, 44, 69, 70] typically adopt the subgraph as the basic unit for processing and handle each subgraph
at most once in an iteration. Therefore, they usually require lots of iterations to propagate the new vertex states
of each subgraph to their successors, which incurs slow convergence speed. Although existing asynchronous
graph processing solutions [59, 68] can be applied for the ReRAM-based architectures, the states of the diferent
vertices in each matrix-formatted subgraph are concurrently and irregularly propagated to other matrix-formatted
subgraphs, which leads to signiicant redundant computations. Besides, the subgraphs of the dependency chain2

may be processed by diferent ReRAM crossbars concurrently, in which the vertex states of each subgraph may
be updated according to the stale vertex states of its neighbors. Thus, many subgraphs need to be frequent
reprocessed for existing ReRAM-based solutions to update their vertices’ states repeatedly. As a result, it wastes
much time for the repeated and redundant processing of the graph data associated with the same subgraph at
diferent times.

After analyzing the characteristics of SpMV-based graph processing, we have made the following observations.
The new vertex states of each subgraph can be quickly propagated to the others when the subgraphs are handled
along their dependencies as well as the vertices that are tightly connected are assigned to the same subgraphs
for processing, because the vertices’ states are inherently propagated along the dependencies among these

1The weights of these edges in the corresponding adjacency matrix are zero.
2Each dependency <�, �> indicates that the vertex states corresponding to the subgraph � are depended on that corresponding to the

subgraph �.
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vertices and the new vertex states associated with the tightly connected subgraphs can be propagated to many
vertices within these subgraphs by iterating them multiple times. Based on the above observations, we develop a
dependency-aware ReRAM-based accelerator called ASGraph, which can eiciently perform the asynchronous
graph processing for better performance.

Diferent from the existing solutions, ASGraph employs an eicient dependency-aware asynchronous processing
approach toward ReRAM-based graph processing to eliminate the redundant computations. In detail, ASGraph
starts from each active vertex to explore the graph along the data dependencies among the vertices to generate the
subgraphs with good internal connectivity. Then, ASGraph detects the explored subgraphs that have accumulated
many state propagations from their neighbors and then classiies them as high-value subgraphs. After that, these
high-value subgraphs are preferentially assigned to be mapped on the same ReRAM crossbar for processing,
achieving the regularized state propagations. After that, many subgraphs do not need to be reprocessed once they
have been processed, because no new vertex states will be propagated from other subgraphs. Besides, ASGraph
proposes a hybrid processing scheme to handle each row of subgraphs by iterating the tightly connected subgraph
in this row multiple times and handling other subgraphs in this row only once, minimizing the redundant
computations. In this way, the new vertex states within each subgraph are regularly propagated along the
dependencies among the vertices’ states for the minimal redundant computation overhead.

Our main contributions are as follows:

• We reveal the intrinsic causes for the problems of the redundant computation overhead of existing ReRAM-
based graph processing solutions.
• We propose a dependency-aware subgraph construction method and an eicient value-driven scheduling
mechanism to regularize the state propagations and apply a hybrid processing scheme to minimize the
redundant computation overhead.
• We conduct comprehensive experiments to demonstrate the advantages of ASGraph. The results show
that ASGraph outperforms the cutting-edge CPU and GPU solutions (i.e., Ligra [43], HotGraph [59],
Gunrock [48], and Scaph [68]) by 1514.9×, 661.1×, 39.6×, and 52.8× and achieves 8064.2×, 3347.8×, 521.9×,
and 676.5× energy saving on average, respectively. Compared to the state-of-the-art ReRAM-based graph
processing accelerators (i.e., GraphR [44] and GaaS-X [5]), ASGraph achieves 25.5× and 4.8× performance
improvement and 70.8× and 2.2× energy saving on average, respectively.

2 Background and Motivation

2.1 ReRAM Basics

The resistive random access memory (ReRAM) [49] is an emerging non-volatile memory that can rapidly perform
the analog computation in-situ mode. Figure 1 shows the basics of ReRAM, where the ReRAM cell is the basic
unit. Through applying an external voltage, the resistance of a ReRAM unit is able to be switched between states
of low resistance (LR) and high resistance (HR), where the states of LR and HR can be used to symbolize the
logic "1" and "0", respectively. The crossbar architecture is used to organize ReRAM cells eiciently and each
wordline is connected to each bitline via ReRAM cells, as shown in Figure 1(b). If the input voltages applied on the
wordlines are �1, �2, ..., �� , the �

�ℎ ReRAM cell will pass the current of ��×�� to the bitline and the total current
of the bitline will be the sum of the currents (i.e.,

∑
�� × �� ) passing through each ReRAM cell in the bitline,

as shown in Figure 1(a). This provides the capability to perform in-situ vector-vector multiplication operation,
while the Matrix-Vector Multiplication (MVM) operation can be supported by applying multiple bitlines with
massive parallel. To support the execution of MVM, as shown in Figure 1(b), the digital-to-analog converters

(DACs) are used to convert input digital values to analog format and transmit them to wordlines. The sample and

hold (S&H) units are employed to extract the output column currents of bitlines and pipe these currents into the
analog-to-digital converters (ADCs), where the ADC is used to convert the analog current into the digital format.

ACM Trans. Arch. Code Optim.
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(a) The current on the bitline (b) ReRAM crossbar
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Fig. 1. Basics of ReRAM

(a) Vertex-centric graph processing (b) SpMV-based graph processing
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Fig. 2. Graph processing in diferent views

2.2 ReRAM-based Graph Processing

The graph �=(� , �) is able to be represented as an adjacency matrix naturally, where the rows of the matrix
represents the source vertices and the columns of the matrix denotes the destination vertices. The number of
rows and columns within the matrix equals that of vertices (|� |). Note that, because each undirected graph is
able to be converted into a directed graph, we use directed graph to illustrate it. The graph algorithms typically
obtain their corresponding inal states of vertices through iteratively processing the vertices and edges of the
graph, where the state of each vertex is usually updated by its neighbor vertices iteratively. In the popular
vertex-centric graph processing model [15, 17, 43], as shown in Figure 2(a), each vertex (e.g., �7) receives the
messages from its neighbors (i.e., �1, �4, �6, and �13) along the corresponding in-coming edges and updates
its own state to reach a state closer to the convergence value. Accordingly, in existing ReRAM-based graph
processing accelerators [44, 69], as depicted in Figure 2(b), the processing of the vertices in each iteration can be
implemented by a Sparse Matrix-Vector Multiplication (SpMV) operation (i.e., ATx) over the ReRAM crossbar,
where the adjacency matrixA represents the graph,AT is the transpose of A, and the vector x denotes the vertices’
states within the current iteration. Because of the limited size of ReRAM crossbars, the whole graph typically
needs to be partitioned into a series of matrix-formatted subgraphs. Then, these subgraphs are sequentially
streamed into the ReRAM crossbar for processing when an active vertex is included.

2.3 Problems of Existing Solutions

Existing ReRAM-based graph processing accelerators [5, 11, 44, 69] typically deine a speciic processing order
(e.g., column-major and row-major) to iteratively handle the matrix-formatted subgraphs, in which each subgraph
is handled at most once in an iteration. Consequently, the vertices within each subgraph typically require many
iterations to propagate their new states to their successors. ReRAM-based graph processing typically takes the

ACM Trans. Arch. Code Optim.
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(a) An example graph (b) Subgraphs of adjacency matrix
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number of each subgraph’s processing times; (b) the ratio of useless updates against the total number of updates

matrix-formatted subgraph as the basic processing unit, which is diferent from CPU-based and GPU-based graph
processing that take vertex/edge as the basic processing unit. Therefore, the diferent vertices’ states in each
matrix-formatted subgraph are concurrently and irregularly propagated to other matrix-formatted subgraphs.
Besides, the subgraphs of the dependency chain may be concurrently handled out of order on multiple ReRAM
crossbars. Thus, the vertices of these subgraphs have to iteratively calculate their states based on the stale states
of the vertices corresponding to their neighbor subgraphs. As a result, existing solutions sufer from signiicant
redundant computation overhead.
We use Figure 3 to illustrate the above problem, where the example graph is partitioned into nine matrix-

formatted subgraphs. As shown in Figure 3(b), each subgraph contains two source vertices and two destination
vertices, and the orange region represents the valid element in the matrix.We assume that there is one active vertex
�1 (the gray vertices in Figure 3(a)) in the current iteration. With existing ReRAM-based approaches [11, 44, 69],
the new state of �1 can only be propagated to its direct neighbors (i.e., the vertices �2 and �4) in each iteration,
because each new vertex state cannot be used by other vertices in the same iteration. In order to propagate
the new state of �1 to �3 and �5, two iterations of graph processing are required. Besides, a graph path (e.g.,
�1→�4→�2→�3→�5) may be partitioned into diferent subgraphs, where there are dependency chains exist among
these subgraphs. However, the subgraphs of the dependency chains may be concurrently handled by diferent
ReRAM crossbars within each iteration. The whole graph has to be handled for many iterations to propagate each
vertex’s state to the others along dependency chain, because the state of an already-processed neighbor can only

ACM Trans. Arch. Code Optim.
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be updated in the next iteration. For example, as shown in Figure 3(c), after the processing of Subgraph 1 and
Subgraph 2, the states of �2 and �4 are updated to 6 and 2, respectively. After that, Subgraph 4, Subgraph 5, and
Subgraph 7 will be handled by the ReRAM crossbars. In detail, for the processing of Subgraph 4 and Subgraph 5,
�2 propagates its state to �3 and �5, and then updates their states to 9 and 13, respectively. For the processing of
Subgraph 7, the states of �2 and �3 will be updated using �4’s state. Therefore, Subgraph 4 and Subgraph 5 have
to be loaded and handled again according to the newest states of �2 and �3. That is to say, the computation of
Subgraph 4 and Subgraph 5 according to the state of �2 (i.e., 6) are useless when �4’s new state (i.e., 2) has not
to be propagated to �2. Note that although GaaS-X can handle �2 and �4 concurrently through gathering and
applying operations for a single vertex, it still sufers from redundant computations. For example, when �3’s
state has been updated to 8 according to both �2’s new state (i.e., 6) and �4’s new state (i.e., 2), �2’s state will be
simultaneously updated to 4 based on �4’s state (i.e., 2). Thus, �3 has to be loaded and handled again according
to �2’s newest state (i.e., 4). This indicates that it is useless to calculate �3’s state according to �2’s state (i.e., 6)
and �4’s state (i.e., 2), because �2’s state will be updated according to �4’s new state and the dependency chain
between �4 and �2.

To demonstrate it, we evaluate two cutting-edge ReRAM-based graph processing accelerators (i.e., GraphR [44]
and GaaS-X [5]) by running the Single Source Shortest Path (SSSP) algorithm. The platform and benchmarks are
detailed in Section 4. As shown in Figure 4, existing solutions sufer from signiicant redundant computation
overhead, which results in the underutilization of the ReRAM crossbar arrays. Although GaaS-X needs less
computations through alleviating the computations on the zero valued edges, it still performs many redundant
computations. It is because the subgraphs of the dependency chains may also be concurrently handled by several
ReRAM crossbar arrays. Consequently, the vertices’ states of many subgraphs are updated according to the stale
vertex states in their neighbors for several iterations before receiving the most recent vertex states from their
neighbors, and need to be reprocessed. As shown in Figure 4(a), we can observe that many subgraphs need
frequent reprocessing, because each vertex usually reads stale states of its neighbors for useless update before
updating these stale states in the same iterations. GaaS-X requires more reprocessing than GraphR, because
GaaS-X supports the native sparse representation of graph data and thus each subgraph of GaaS-X contains more
edges than that of GraphR. It indicates that more state propagations will pass through each subgraph in GaaS-X.
Figure 4(b) shows that the number of useless vertex state updates occupies more than 80.1% of that of total vertex
state updates in GaaS-X. GaaS-X conducts fewer useless updates than GraphR because GaaS-X can alleviate the
unnecessary computations on zero-valued edges.

2.4 Motivation

We have the following two observations regarding the redundant computation overhead in ReRAM-based graph
processing.

Observation one:When constructing the subgraphwith good internal connectivity through tracking the dependencies

between the active vertices and their successors, the new vertex states within this subgraph can be able to quickly

and eiciently work on their successors using an asynchronous way. Taken Figure 5(a) as an example, we assume a
subgraph contains four vertices and the active vertex is �0. When we track the dependencies between �0 and
its successors, we can construct a tightly connected subgraph, which is composed of �0, �4, �7, and �8. In this
way, only the active vertices and their successors need to be loaded for processing, avoiding the unnecessary
computation overhead. Besides, when we asynchronously handle each tightly connected subgraph iteratively, it
enables the new vertex state (e.g., the state of �0 in Figure 5(a)) with this subgraph to be quickly propagate to its
successors (i.e., �4, �7, and �8 in Figure 5(a)) in the same subgraph.
Observation two: Most redundant computations of processing the subgraphs over the ReRAM crossbars can be

alleviated when handling these subgraphs along the dependencies among their vertices. As shown in Figure 3(a), after
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the processing of active vertex �1, the states of �2 and �4 are updated to 6 and 2, respectively. Then, the subgraphs
containing �2 and �4 need to be processed. The processing order of these subgraphs afects the convergence
rate of the graph algorithm. Speciically, if we preferentially process subgraph containing �4, �2 receives the
state propagation from �4 and updates its own state to 4. After that, the subgraph containing �2 is assigned to
be handled. Then, it can directly update the state of �3 and �5 using the latest state of �2 (i.e., 4). As a result, the
useless state updates of �3 and �5 according to the state of �2 (i.e., 6) are avoided. In this way, the vertices (e.g., �3
and �5) of the subgraphs need much fewer vertex state updates, reducing the redundant computation overhead
signiicantly.

3 Overview of Our Solution

Based on the above observations, we propose an eicient ReRAM-based accelerator ASGraph, using our proposed
dependency-aware asynchronous processing model to achieve eicient execution of graph algorithms. In this
section, we irst present the main idea of our proposed processing model and then detail the implementations of
ASGraph.

3.1 Dependency-aware SpMV-based Graph Processing Model

This subsection will introduce the main idea of the dependency-aware asynchronous processing model, which
dynamically constructs the matrix-formatted subgraphs based on dependencies between vertices, regularizes the
state propagations among these constructed subgraphs, and applies a hybrid processing scheme to minimize
redundant computation overhead. The details of our method are described below.

ACM Trans. Arch. Code Optim.



8 • J. Zhao et al.

Algorithm 1 Graph Translation Algorithm

Input: Original graph � = (� , �)

1: ��� ← ConstructDAG(�) ⊲ Construct the DAG of the graph
2: while IsNotEmpty(���) do ⊲ DAG is not empty
3: ����� ← GetAllSCCHasNoInDegree(���) ⊲ Get all SCCs without in-degree
4: DeleteAllSCCinLayer(���, ����� ) ⊲ Delete all SCCs in current Layer
5: Ascending(����� ) ⊲ Ascending layer
6: end while

7: � ′ ← Reorder(�, ���, ����� ) ⊲ Reorder the vertices of � to get the reordered graph � ′

Dependency-aware Subgraph Construction. Based on our observation, we can alleviate the irregular state
propagations through handling the graph data according to the graph topology. Thus, as shown in Algorithm 1,
we irst represent the original graph as a directed acyclic graph (DAG) [62] through extracting Strongly Connected
Components (SCCs)3 using Tarjan algorithm [45] (line 1). After that, as shown in Figure 5(b), the SCCs of DAG
are divided into layers according to their topological order in the DAG (lines 2-6), where the SCC in a layer can
only be activated by the SCC at the lower layer. Then, we reorder the vertices following in the topological order
of the SCCs in the DAG (line 7), where the vertices inside the same SCC are consecutively arranged, as shown in
Figure 5(b). Figure 5(d) represents that the adjacency matrix of this reordered graph, where this adjacency matrix
consists of three parts. The irst part is the sub-matrices on the diagonal (e.g., the sub-matrix 0 and sub-matrix 3
in Figure 5(d)), which are the SCCs of the graph. The second part is the elements above the sub-matrices on the
diagonal (e.g., the sub-matrix 1 in Figure 5(d)), which correspond to the edges among SCCs. The third part is the
elements below the sub-matrices on the diagonal (e.g., the sub-matrix 2 in Figure 5(d)). Due to the SCCs do not
constitute a cycle, there are no valid elements in the third part. During the processing, we can iteratively handle
the sub-matrices on the diagonal along the topological order between their corresponding SCCs for regular state
propagations. That is, sub-matrix 3 is assigned to be handled only when the vertices (i.e., �0, �1, ... , and �7 in
Figure 5(d)) associated with sub-matrix 0 have converged. Note that the elements above the sub-matrices on the
diagonal (e.g., sub-matrix 1) only need to be handled once for the propagation of the new vertex states among
SCCs (i.e., sub-matrix 0 and sub-matrix 3).
For the processing of each SCC, it usually needs to be divided into a series of matrix-formatted subgraphs

with speciied size (which is determined by the size of the ReRAM crossbar). The vertex state is inherently
propagated along the dependencies among the vertices, thus only active vertices and their successors need to be
processed during the execution. Based on this observation, we dynamically extract a set of the tightly connected
vertices through tracking the dependencies between these active vertices and their successors, and then uses
these vertices’ edges in this SCC to construct several matrix-formatted subgraphs that need to be handled. Note
that the number of vertices extracted each time is determined by the crossbar size. In this way, the new vertex
states can be propagated quickly during the processing of each subgraph.
Speciically, as shown in Algorithm 2, it irst adds an unvisited active vertex into the vertex set � of this

subgraph (lines 1-3), and then explore the optimal vertex from the neighbors of the vertices in � (lines 5-7).
This procedure will be repeated until the size of the subgraph reaches the crossbar size or all neighbors of
the vertices in � have been added (line 4). OptimalNeighbor is employed to obtain the neighbor that is most
densely connected to the vertices in � . Note that the optimal neighbor � � satisies the condition Connect(� � ) =
argmax�∈����ℎ��� (� )Connect(�), where Connect(�) is used to count the number of edges between the vertices in

3Each SCC represents a maximal subgraph in which every pair of vertices is reachable from each other.
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Algorithm 2 Dependency-aware Subgraph Construction

Input: Reordered graph� ′ = (� ′, �′), active vertex set �� , the set of the tightly connected vertices � , ReRAM
crossbar size �_����

1: for each unvisited vertex �� ∈ �� do ⊲ Explore each unvisited active vertex
2: Set �� as visited
3: � ← {�� }

4: while Size(�) < �_���� and there is unvisited neighbor of � do

5: � � ← OptimalNeighbor(�) ⊲ Obtain the optimal vertex � � from � ’s neighbors
6: Set � � as visited
7: � ← � ∪ {� � } ⊲ Add � � into �
8: end while

9: ConstructSubgraph(�) ⊲ Construct the matrix-formatted subgraph using �
10: end for

� and the vertex � . After that, the edges of the vertices in � are used to construct the matrix-formatted subgraphs,
where the edges between the tightly connected vertices will be constructed into the same subgraph.

Taken Figure 5 as an example, where the active vertex is assumed as �0 in the reordered graph and the crossbar
size is assumed as four. �0, �1, and �2 will be sequentially added into � . Next, the neighbors of � are �3, �6, and �9.
Because �3 has the largest number of edges that are connected to the vertices in � , �3 will be added into � , so that
the set of the tightly connected vertices contains �0, �1, �2, and �3. Then, these vertices’ edges (i.e., the non-zero
elements in sub-matrix 0) is used to construct the subgraph 0 and subgraph 1, where subgraph 0 consists of the
edges between the tightly connected vertices. By such means, the new vertex state (e.g., �0) can be immediately
and eiciently used to update the states of its successors (e.g., �1, �2, and �3) on the same subgraph (i.e., subgraph
0) in the same iteration, indicating faster convergence rate than existing solutions.

Value-driven Subgraph Scheduling. For the processing of each SCC, a wrong execution order of its subgraphs
may result in massive redundant computations. It is because the vertices’ states of many subgraphs may be
frequently updated according to the stale vertex states of their neighbors within the same SCC. To overcome this
limitation, we propose a value-driven scheduling method to adaptively assign the processing order of subgraphs,
ensuring a fast convergence speed. Speciically, unlike existing solutions [59, 68] mainly use graph structural
characteristics to determine priority, our approach speciies a subgraph with a higher value when the vertices of
this subgraph have accumulated a lot of state propagations from their neighbors (i.e., the greater the change in
its vertex states) or can afect the vertex states of more subgraphs (i.e., its vertices has more neighbors). These

rules can be expressed as Value � =
∑

�� ∈�� |�
��
� − �

��−1
� | × lg(�� + 1), where Value � is the speciied value of the ��ℎ

subgraph, �� is the set of active vertices, ���� and ���−1� are the states of �� in the ��ℎ� and (�� − 1)�ℎ iterations,
respectively, and �� is the outdegree of �� . Then, the subgraphs with the higher values will be preferentially
mapped to the ReRAM crossbars for processing. Note that the subgraphs with the same set of source vertices
will be given the same value, thus we apply the row-major processing order to handle the subgraphs within
each SCC and the processing order of the rows of subgraphs is determined by their values. Taken Figure 3 as
an example, where �2 and �4 are activated when �1 has propagated it’s new state to them. Then, the subgraphs
containing �2 and �4 (i.e., Subgraph 4, Subgraph 5, and Subgraph 7) need to be processed. Because the change of
�4’s state is larger, the subgraphs containing �4 (i.e., Subgraph 7) will be preferentially handled. After that, �4
propagates its new state to �2 and �3 and the state of �2 can be instantly updated from 7 to 4. Thus, the redundant
state propagations associated with the stale state of �2 can be eliminated.
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Fig. 6. Overview of ASGraph design

Hybrid Processing Scheme. For the processing of each row of subgraphs (i.e., the ones with the same set of
source vertices and the same value), we design a hybrid processing scheme to handle these subgraph to minimize
the redundant computations. Speciically, the subgraph consisting of edges between tightly connected vertices
(e.g., subgraph 0 in Figure 5(d)) is preferentially assigned to be iteratively processed until its vertices’ states are
unchanged, enabling the new state of the vertices to be propagated quickly. After that, the other subgraphs (i.e.,
subgraph 1 in Figure 5(d)) of the same row will be assigned to be handled once. In this way, it makes the states of
the tightly connected vertices closer to the convergence states before these vertices propagate their states to
other vertices (i.e., the source vertices of other rows), minimizing the redundant computations.

3.2 Overview of ASGraph

Based on our dependency-aware SpMV-based graph processing model, we propose a novel ReRAM-based asynchro-
nous graph processing accelerator ASGraph. Figure 6 shows the overview of ASGraph, which consists of three
primary components, i.e., Dependency-Aware Subgraph Constructor (DSC), Value-Driven Subgraph Scheduler (VSS),
and Hybrid Processing Engine (HPE). Diferent from existing ReRAM-based accelerators [5, 11, 44, 69], the DSC is
used to dynamically construct the matrix-formatted subgraphs on the ly according to the dependencies among
the vertices’ states. After that, the VSS of ASGraph is employed to assess the value of the constructed subgraphs
and preferentially assign high-value subgraphs to be handled by the HPE. The HPE of ASGraph consists of
a number of customized ReRAM-based crossbar arrays, which employ a hybrid processing scheme to handle
each row of subgraphs within the same SCC. Note that ASGraph relies on the host to represent the original
graph as a DAG, reorder the vertices along their topological order shown in the DAG, and divide the reordered
graph (e.g., the graph in Figure 5(b)) into a series of sub-matrices as shown in Figure 5(d). The Controller of
ASGraph assigns these sub-matrices to be handled according to their topological order (i.e., the order should be
sub-matrix 0, sub-matrix 1, and sub-matrix 3), where each sub-matrices only needs to be assigned once. The main
functionalities of the components of ASGraph are as follows.
When Controller assign a sub-matrix according to the topological information shown in the DAG, the DSC

starts from each active vertex to track the dependencies between this vertex and its successors so as to extract
the set of vertices that are tightly connected with it. After that, it use the edges of these extracted vertices to
construct the subgraphs and then insert these constructed subgraphs into the Subgraph Queues. In this way, it
enables the fast state propagation for each active vertex when processing its corresponding subgraph over the
ReRAM crossbar array.
When the subgraphs have been constructed in the Subgraph Queues, the VSS of ASGraph will calculate their

values for achieving value-driven scheduling. Besides, the vertices’ states in the subgraphs will be updated at

ACM Trans. Arch. Code Optim.



An Eficient ReRAM-based Accelerator for Asynchronous Iterative Graph Processing • 11

Vertex ID 0 1 2 3 4 5 6 7

(a) Graph storage in the CSR format (b) The representation of the corresponding DAG

8

SCC_Neighbor

SCC_Offset

SCC ID

0 1

0 1

scc1

SCC_Vertices

SCC_Table

SCC ID

v0 v1 v2 v3 v4 v5 v6 v7

0 8 12

0 1 2

v8 v9 v10 v11SCC_Vertices

SCC_Table

SCC ID

v0 v1 v2 v3 v4 v5 v6 v7

0 8 12

0 1 2

v8 v9 v10 v11

Vertex_States 
_Array

Offset_Array

Neighbor_Array v2

Weight_Array

s0

1

s1 s2 s3 s4 s5 s6 s7

0 4 7 9 11 12 14 162

...

...

s8

Active_Vertices 1 0 0 0 0 0 0 0 ...Active_Vertices 1 0 0 0 0 0 0 0 ...

v3

3 6 7 3 5 4 1 7 4 5 8 5 10 9 ...

v0 v2 v3 v6 v9 v1 v8 v0 v6 v4 v5 v7 v5 v11 ...

4

2

Fig. 7. The data structure of ASGraph (corresponding to the graph in Figure 5)

runtime during the processing, VSS needs to dynamically maintain the values of the constructed subgraphs.
During the processing, VSS will obtains the subgraphs with the highest value from the Subgraph Queues, where
the obtained subgraphs are stored in the VSS’s bufer and will be transmitted to the HPE for processing. Note
that each row of subgraphs in the assigned sub-matrix is given the same value, thus this value only needs to be
calculated once for multiple subgraphs to reduce the calculation overhead. Meanwhile, it means that each row of
subgraphs will be transmitted to the HPE together.

When the HPE receives the subgraphs (i.e., the subgraphs within the same row) from VSS, HPE preferentially
takes out the tightly connected subgraph (i.e., its source vertex set is the same as its destination vertex set) and
convert its format to the adjacency matrix format for processing. After that, HPE will load this subgraph into
the Computing Unit (CU) and iteratively handle it until its vertices’ states don’t change anymore. After that, the
other subgraphs of the same row will be assigned to be handled by HPE, where these subgraphs only need to be
processed by CU once. By such means, the corresponding source vertices of each row can accumulate more state
propagations originated from each other and then propagate these new states to other vertices (i.e., the vertices of
other rows), further reducing the redundant computations. Note that, after the processing of each subgraph, HPE
will update the corresponding vertex states and triggers VSS to update the values of the constructed subgraphs
according to their latest vertex states.

3.3 Hardware Design

3.3.1 Key Data Structure of ASGraph: In this subsection, we present the key data structures required by the
ASGraph. Because Compressed Sparse Row (CSR) is the most popular format, like existing ReRAM-based solu-
tions [69], ASGraph uses the CSR format to store the graph data as shown in Figure 7(a). Speciically, it mainly
uses three arrays to store the graph, i.e., Ofset_Array, Neighbor_Array, andWeight_Array. The begin/end ofset
of neighbor vertices are stored in Ofset_Array. Neighbor_Array stores the neighbor vertex’s ID corresponding
to each outgoing edge.Weight_Array records the weight of each edge. We also record the states of vertices in
Vertex_States_Array. Meanwhile, as shown in Figure 7(a), a bitvector Active_Vertices is used to record the active
vertices. Note that we store the reordered graph using the above format for ASGraph. Besides, we also store the
DAG of the reordered graph as shown in Figure 7(b). To eiciently store the DAG, SCC_Ofset stores the ofsets
of the beginning and end of the neighbors for each SCC, and SCC_Neighbor maintains all neighbors for them.
SCC_Table and SCC_vertices are employed to record the set of vertices contained in each SCC. Note that an array,
i.e., Connectivity_Array, is used to maintain the intermediate information during dynamically constructing the
subgraphs.

3.3.2 Dependency-aware Subgraph Constructor: To construct the subgraphs, a ix-depth hardware stack is used
in DSC to maintain the information of explored vertices, where the ID of each explored vertex and the current and
end ofsets of its neighbors are stored in a level of the stack. The depth of the stack is determined by the ReRAM
crossbar size. Note that Connectivity_Array is used store all neighbors of the vertices in the stack and also record
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the number of the edges from these neighbors to the vertices in the stack. As shown in Figure 8, to eiciently
realize dependency-aware subgraph construction, four stages, i.e., Get_Vertex, Fetch_Ofset, Fetch_Neighbor, and
Calculate_Connectivity are implemented as a pipeline. Speciically, at the beginning of the pipeline, if the stack is
empty, the Get_Vertex stage gets an unvisited active vertex by scanning Active_Vertices and pushes it into the
stack. Otherwise, the Get_Vertex stage selects the neighbors with the maximum number of connected edges from
the Connectivity_Array and pushes it into the stack. In the Fetch_Ofset stage, DSC fetches the beginning and end
ofset of its neighbors from the Ofset_Array. In the Fetch_Neighbor stage, the current ofset of the top vertex
in the stack is used to fetch the unvisited neighbor vertices of it, and then these fetched neighbors are set as
visited. In the Calculate_Connectivity stage, the value of the fetched neighbor vertex in the Connectivity_Array is
increased by one, which indicates that the number of edges from the vertices in the stack to this fetched neighbor
vertex is increased by one. At the end of this pipeline, if the number of the vertices in the stack reaches the
ReRAM crossbar size, all the vertices in the stack are popped and used to construct a subgraph, which is stored in
the Subgraph Queues. Then, the values in the Connectivity_Array will be initialized to zero and repeats the above
process until all active vertices have been visited.
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To 
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Fig. 9. The pipeline of VSS

3.3.3 Value-Driven Subgraph Scheduler. When some subgraphs are constructed by the DSC, the VSS of ASGraph
needs to calculate the values of the subgraphs for scheduling. Speciically, as shown in Figure 9, three stages, i.e.,
Scan_Vertex, Calculate_Degree, and Calculate_Value are implemented as a pipeline. The Scan_Vertex stage scans
the source vertices of each subgraph in the Subgraph Queues to obtain their states and neighbors’ beginning and
end ofsets. After that, at the Calculate_Degree stage, it subtracts each scanned vertex’s beginning ofset from its
end ofset to obtain the outdegree of this vertex. Based on these information (i.e., the states and outdegrees of
the vertices in this subgraph), the Calculate_Value stage calculates the value for this subgraph according to the
rules deined in Section 3.1. Note that the values of the subgraphs that have the same set of source vertices only
need to be calculated once. Then, the Select_Subgraph logic of VSS requests the subgraphs with the highest value
from the the Subgraph Queues and then transmits these subgraphs to the Processing Bufer of HPE to drive the
processing of the HPE. Note that the states of vertices in the subgraphs may be updated during the execution,
thus VSS will dynamically update the values of the corresponding subgraphs according the state updates of the
vertices.

3.3.4 Hybrid Processing Engine. When the Processing Bufer of HPE receives the subgraphs from VSS, HPE will
preferentially handle the tightly connected subgraph and then handle the other subgraphs with the same set of
source vertices, minimizing the redundant computations. Speciically, the prefetcher preferentially assigns the
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access

tightly connected subgraph to the converter. After that, the converter converts the graph data of the assigned
subgraph in CSR format to the format of adjacency matrix and then maps this adjacency matrix on the ReRAM
crossbar of a CU. Meanwhile, the prefetcher loads the vertex states associated with this assigned subgraph and
sends these states into the input bufer for processing. Note that each CU is assigned to process the subgraphs
with the same source vertices, while diferent CUs handle diferent row of subgraphs for parallelism. For the
processing of the tightly connected subgraph over each CU, this subgraph needs to be iteratively handled by
the this CU until its vertices’ states are unchanged, i.e., the previous vertex states in the input bufer is the same
as the latest vertex states in the output bufer. If these vertices’ states are changed, the CU can directly use the
vertex states in the output bufer as the input for iteratively processing. Otherwise, the other subgraphs with
the same set of source vertices of this tightly connected subgraph will be assigned to be processed by this CU
once. The corresponding vertex state updates will be send to the VSS to update the values of the corresponding
subgraphs. Besides, the new active vertices will also be labeled in the Active_Vertices, which is used to trigger
DSC to construct the new subgraphs.

3.3.5 Execution Flow: Figure 10 shows the execution low of ASGraph. Speciically, the Controller of the ASGraph
irst assigns a sub-matrix to be handled according to its topological order shown in the DAG of the graph (step

1 ). After that, DSC starts from each active vertex to traverse the graph structure data (i.e., step I) so as to
construct the tightly connected subgraph in the assigned sub-matrix through tracking the dependencies among

this active vertex and its successors (step 2 ), and also maintains them in the Subgraph_Queues (step 3 ).

For the constructed subgraphs, VSS calculate their values (step 4 ) and uses these values to achieve subgraph

scheduling (step 5 ), where the subgraphs with the largest value will be preferentially assigned for processing

(step 6 ). When a subgraph is assigned to the Processing Bufer, HPE prefetches the vertex states of these

subgraphs (step 7 and step II) and also converts the format of these subgraphs to the adjacency matrix for

mapping (step 8 ). When a subgraph is mapped over the CU of the HPE, it will be handled by this CU accordingly

(step 9 ). After the processing of each subgraph, the corresponding vertices’ states may be updated, where

these vertex state updates need to be send to the VSS (step 10 ) and these updated vertex state data will also be
applied in Vertex_States_Array (i.e., step III). VSS will use these vertex state updates to update the values of the

corresponding subgraphs (step 4 ).

4 Evaluation

4.1 Experimental Setup

The cycle accurate simulator based on Structural Simulation Toolkit [38] is used in our experiments to model the
main hardware units, including Controller, Dependency-Aware Subgraph Constructor (DSC), Value-Driven Subgraph
Scheduler (VSS), and the control unit in Hybrid Processing Engine (HPE). For the Computing Unit (CU) in HPE, we
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Table 1. Hardware Specifications of ASGraph

Component
Area

(mm2 × 10−3)

Power

(mW)
Parameters Speciications

CU Properties (2048 CUs)

ReRAM crossbar 1.58 11.80
Size 8×8

Number 1 Per CU

DAC 0.4 2.80 Number 8 Per CU

S&H 0.02 0.024 Number 8 Per CU

ADC 33.80 31.20 Number 1 Per CU

SFU 11.50 1.21 Number 1 Per CU

Other Properties

Subgraph Constructor 212.00 10.10 Latency 112 ns

Subgraph Scheduler 137.60 8.24 Latency 33 ns

Prefetcher 21.20 2.05 Latency 24 ns

Converter 15.52 1.74 Latency 20 ns

Controller 116.80 6.52 Latency 16 ns

Subgraph Queues 102.40 139.52 Size 256 KB

Input/Output Bufer 51.20 69.76 Size 128 KB

Processing Bufer 3.20 4.36 Size 8 KB

Cache 409.60 558.08 Size 1024 KB

Table 2. Configuration of the CPU

CPU Intel(R) Xeon(R) Platinum 8358 CPU,

64 cores, x86-64 ISA, 2.6 GHz

L1 Instruction Cache 32 KB per-core, 8-way set-associative

L1 Data Cache 48 KB per-core, 12-way set-associative

L2 cache 1280 KB, 20-way set-associative

L3 cache 48 MB, 12-way set-associative

Memory 1 TB

adopt the architecture of ReRAM crossbar to implement it. Besides, NVSim [13] is used to estimate the execution
time and energy consumption of the ReRAM crossbar in our experiments. The speciic parameter information of
the ReRAM cell reported in [33] is as follows. The LRS/HRS resistance of the ReRAM cell are 50 KΩ and 25 MΩ

and the write/read voltage are 2 V and 0.7 V. In addition, the write/read latency are 50.88 ns and 29.31 ns, and
the write/read energy consumption are 3.91 nJ and 1.08 pJ, respectively. The data of Analog/Digital converters
are from [30], and the precision of ADCs and DACs are 6 bits and 2 bits. Table 1 summarizes the ASGraph
conigurations and its area-energy breakdowns, where each Special Function Unit (SFU) consists of shift and add
units (S&A) and scalar arithmetic and logic unit (sALU) to process the crossbar outputs and perform additional
operations to support various graph algorithms. Note that the latency and power consumption parameters of
the on-chip bufers (e.g., Subgraph Queues, Processing Bufer, and Input/Output Bufer) are modeled using CACTI
6.5 [1] at 32 nm scale. The control circuitry (e.g., DSC, VSS, Prefetcher, and Converter) is implemented using
SystemVerilog RTL, and the power consumption and area metrics are obtained by doing RTL synthesis in 32
nm technology for operation at 1 GHz. There are 128 queues in the Subgraph_Queues and 1024 entries in the
Processing Bufer in our experiments by default.
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Table 3. Configuration of the GPU

Graphic Card NVIDIA A100-SXM4-80GB

CUDA cores 6912

Base Clock 1065 MHz

Graphic Memory 80GB HBM2e

Memory Bandwidth 2039 GB/s

CUDA Version 11.7

Table 4. Characteristic Statistics of Datasets

Datasets Vertices Edges Avg Degree

Amazon(AZ) [21] 262,111 1,234,877 9

web-Stanford (SF) [21] 281,904 2,312,497 16

web-BerkStan (BK) [21] 685,231 7,600,595 22

soc-LiveJournal (LJ) [21] 4,847,571 68,993,773 28

com-Friendster (FS) [21] 65,608,366 1,806,067,135 55
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Fig. 11. Speedup compared to the cuting-edge ReRAM-based accelerators

To evaluate the efectiveness of our approach, we compare the performance of ASGraph with the best-
performing shared-memory software graph processing system Ligra (v1.5) [43] and asynchronous graph process-
ing system HotGraph (v1.0) [59] over a CPU platform with a 64-core Intel Xeon CPU (detailed in Table 2), the
cutting-edge GPU graph processing systems Gunrock (v2.0.0) [48] and Scaph (v1.0) [68] over a GPU platform with
6912 CUDA cores (detailed in Table 3), and two state-of-the-art ReRAM-based graph processing accelerators (i.e.,
GraphR [44] and GaaS-X [5]). We use the simulators mentioned above to model GraphR and GaaS-X and keep the
same crossbar size and the same number of crossbars in GraphR, GaaS-X, and ASGraph, respectively. Note that
the ReRAM crossbar size and the number of ReRAM crossbars are 8×8 and 2048 in our experiments, respectively.
Similar to existing works [11, 69], ASGraph, GraphR, and GaaS-X maintain graph metadata in ReRAM. The CPU
and GPU power consumption are measured by using CPU Energy Meter [29] and Nnvidia-smi [34], respectively.

Evaluation Benchmarks. We evaluate the performance of ASGraph by conducting experiments on ive real-
world graph datasets. The characteristics of these graph datasets are shown in Table 4. In experiments, we evaluate
the ASGraph using four representative graph algorithms (i.e., Single Source Shortest Path (SSSP) [44], Single Source
Widest Path (SSWP) [12], Connected Components (CC) [69], and Incremental PageRank (PageRank) [58]).

4.2 Comparison to ReRAM-based Accelerators

The performance comparison of ASGraph with the cutting-edge ReRAM-based accelerators is shown in Figure 11.
The experimental result shows that ASGraph outperforms GraphR [44] and GaaS-X [5] by 7.3×∼52.6× and
2.1×∼11.9×, respectively. Figure 12 presents the energy saving of ASGraph compared to other ReRAM-based
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Fig. 12. Energy saving compared to the cuting-edge ReRAM-based accelerators
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Fig. 13. Matrix calculation times normalized to that of GraphR

accelerators. It shows that ASGraph consumes 12.9×∼212.8× less energy than GraphR and 1.2×∼4.3× less
energy than GaaS-X. Overall, ASGraph achieves an average of 25.5× speedup and 70.8× energy saving over
GraphR and achieves an average of 4.8× speedup and 2.2× energy saving over GaaS-X. Note that when handling
undirected graphs (i.e., the edges in the real-world graphs used in our experiments are treated as undirected edges),
ASGraph still outperforms GraphR and GaaS-X by 21.4× and 4.1× on average, respectively. These performance
improvements of ASGraph mainly come from the following reason.
We evaluate the breakdown of the matrix calculation times of GraphR, GaaS-X, and ASGraph, respectively.

Figure 13 shows that ASGraph reduces the matrix calculation in GraphR by 81.4%∼97.3% and in GaaS-X by
52.2%∼79.2%, respectively. Compared to GraphR, although GaaS-X achieves a 77.2% reduction in matrix calculation
by processing graphs in a sparse way, it sufers from the problem of signiicant redundant computation overhead.
In comparison, ASGraph dynamically constructs the subgraph based on dependencies between vertices’ states,
regularizes the state propagations among the subgraphs, and applies a hybrid processing scheme to minimize the
redundant computations, reducing the matrix operations in GraphR by 92.7% and in GaaS-X by 67% on average,
respectively. Besides, as shown in Figure 13, ASGraph requires much less useless matrix calculations (i.e., only
5.2% in GraphR and 23.1% in GaaS-X on average, respectively). It means that ASGraph needs to load much fewer
graph data to construct the tightly connected subgraph for processing on the ReRAM crossbars. The results show
that the volume of memory access in ASGraph is only 20.5% and 21.4% of that of GraphR and GaaS-X on average,
respectively.

4.3 Benefit Breakdown

We mainly proposed three optimization strategies, including Dependency-Aware Subgraph Construction (SC),
Value-Driven Subgraph Scheduling (SS) and Hybrid Processing Scheme (HP). Figure 14 evaluates the efectiveness
of these three stages respectively, where ASGraph-without is the basic version of ASGraph that uses only the
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Fig. 16. Breakdown analyses on matrix calculation times

over FS

native asynchronous execution model4 without using our proposed optimization strategies and ASGraph-SCC
is the version of ASGraph that only applies vertex reordering following the topological order of the SCCs. We
can observe that the performance improvements mainly come from SC and SS, which is consistent with our
expectations. Figure 14 shows that ASGraph-SCC achieves 1.1×∼1.4× performance improvement compared to
ASGraph-without. This is because ASGraph-SCC can concentrate the non-zero elements in the adjacency matrix
and also enables the vertex states to be propagated along the topological order among the SCCs, achieving fewer
redundant computations. When using the SC5, it dynamically constructs the tightly connected subgraphs by
tracking the dependencies between the active vertices and their successors. Thus, it can eiciently improve the
crossbar density and enables only active vertices and their successors to loaded for processing. The SC is the basis
for later optimizations and the inding of the tightly connected subgraphs enables us to propose strategies to
eiciently schedule the processing of subgraphs. As shown in Figure 14, SC reduces execution time by 16%∼49.7%
compared to ASGraph-without. When using the SC and SS, the execution time can be reduced by 65.5%∼96%. SS
deine a value for each subgraph and schedule the processing order of them so that the new vertex states of the
subgraphs can be propagated along the dependencies between vertices as much as possible. When using the HP,
it can further improve the performance by applying a hybrid processing scheme and reducing the redundant
computation caused by the untimely state propagations for the processing of the subgraphs in each row. Figure 14
shows that the execution time can be inally reduced by 86.3%∼97.9% when using SC, SS, and HP.

4There is no barrier between iterations, and the new states of each subgraph are allowed to be immediately used by other subgraphs. Like

existing solutions [11, 44, 69], the graph is split into a series of subgraphs, which are handled by ASGraph-without in a round-robin way.
5ASGraph_with_SC dynamically constructs the subgraphs with good internal connectivity and then handles these subgraphs along their

construction order. Note that the new states of each subgraph are also allowed to be immediately used by other subgraphs.
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Fig. 19. Sensitivity to ReRAM crossbar size of ASGraph on diferent datasets

Figure 15 and Figure 16 conduct the breakdown analyses on energy, matrix calculation times, and useless
updates of our proposed optimization strategies. These igures show that the reduction of useless calculations
and energy savings also mainly come from SC and SS. In detail, SC reduces useless matrix calculation times by
37.8% and achieves 1.8× energy saving in comparison with ASGraph-without. When using SC and SS, the useless
matrix calculation times can be reduced by 88.9% and the energy saving is increased to 18.9×. Finally, when using
SC, SS, and HP, the useless matrix calculation times can be reduced by 93.6%, and the energy saving is increased
to 43.6×.

Figure 17 evaluates the performance of the ReRAM-based accelerators with diferent vertex reordering methods
(i.e., Spara [69], GraphSAR [11], Lo [26], SGIRR [47], ReSpar [18], ASGraph-SCC, and ASGraph) normalized to
that of GraphR when running SSSP, which is a representative graph algorithm used in Graph 500 Benchmark [2].
From this igure, we can ind that ASGraph-SCC achieves comparable performance to GraphSAR, Lo, and SGIRR,
but worse than Spara and ReSpar. Note that, as shown in Figure 18, although ASGraph-SCC performs worse
than Spara and ReSpar, it requires less preprocessing overhead in comparison with them. However, although the
above vertex reordering solutions can increase the opportunities to skip redundant writes and computations
with zero-valued elements in the adjacency matrix, they still sufer from signiicant redundant computations due
to the irregular vertex state propagations. Compared with them, based on the vertex reordering following the
topological order of the SCCs, ASGraph dynamically constructs the subgraph based on the dependencies between
vertices in each SCC (i.e., SC) and then assigns the high-value subgraphs to be preferentially processed (i.e., SS),
eiciently regularizing the state propagations of the ReRAM-based graph processing. Besides, ASGraph further
employs a hybrid processing scheme (i.e., HP) to further accelerate the state propagations of the tightly connected
subgraph. This way, as shown in Figure 17, ASGraph outperforms Spara, GraphSAR, Lo, SGIRR, ReSpar, and
ASGraph-SCC by 4.3×, 21.5×, 14.4×, 58.8×, 2.9×, and 28.5× on average, respectively.
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Fig. 20. Sensitivity to ReRAM crossbar size of diferent solutions over FS
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4.4 Sensitivity Study

Figure 19 have evaluated the performance of ASGraph with diferent ReRAM crossbar sizes, where the crossbar
size ranges from 4×4 to 128×128. It shows that better performance can be obtained by ASGraph when the ReRAM
crossbar size becomes larger. Speciically, when the ReRAM crossbar size is less than 8×8, 8×8, 16×16, 16×16, and
32×32 for AZ, SF, BK, LJ, and FS, respectively, the performance improvement of ASGraph gains dramatically.
This is because the averaged edges of each vertex (i.e., #�����/#�������� , where #����� and #�������� represent
the number of edges and vertices in the graph) in AZ, SF, BK, LJ, and FS are 5, 8, 11, 14, and 28, respectively.
These are far less than the crossbar size used (e.g., 128×128) and also distributed in diferent crossbars with
more zeros in each row. Thus, when the crossbar size is less than the averaged edges per vertex (e.g., < 32×32
for FS), ASGraph improves the performance dramatically. If the crossbar size is greater than 32×32 for FS, the
speedup growth gradually becomes slow. To strike a balance between the ReRAM crossbar size and performance,
the better crossbar size can be set as 8×8, 8×8, 16×16, 16×16, and 32×32 for AZ, SF, BK, LJ, and FS, respectively.
As depicted in Figure 20, ASGraph always achieves better performance than existing solutions under diferent
ReRAM crossbar sizes.
Figure 21 evaluates the efectiveness of diferent scheduling methods, where ASGraph-without-SS is the

version of ASGraph that disabled the Value-Driven Subgraph Scheduling (SS) strategy, and ASGraph-HotGraph
and ASGraph-Scaph are the versions of ASGraph-without-SS that apply the scheduling methods in HotGraph [59]
and Scaph [68], respectively. The results show that the value-driven subgraph scheduling strategy of ASGraph
always outperforms the scheduling strategies of ASGraph-HotGraph and ASGraph-Scaph. This is because
ASGraph accurately assigns higher priority to subgraphs that have accumulated signiicant state propagations
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Fig. 23. Speedup compared to CPU, GPU, and PIM platforms

1

10

100

1000

10000

100000

PageRankCCSSWPSSSP
AZ

Gm

Ligra HotGraph Gunrock Scaph GraphP GraphQ

SF BK LJ FS AZ SF BK LJ FS AZ SF BK LJ FS AZ SF BK LJ FS

Fig. 24. Energy saving compared to CPU, GPU, and PIM platforms

from their neighbors, achieving more regularized state propagations. Figure 22 shows that ASGraph requires less
energy consumption compared with other solutions.

4.5 Comparison to Other Platforms

The performance comparison of ASGraph with CPU platform is shown in Figure 23. We run Ligra [43] and
HotGraph [59] on a 64-core Intel Xeon CPU and normalize the performance of ASGraph to them. The experimental
result shows that the geometric mean of speedups of ASGraph compared to Ligra and HotGraph are 1514.9×
and 661.1×, respectively. Compared to CPU platform, ASGraph performs better on AZ, SF, and BK datasets and
achieves lower speedup on LJ and FS datasets. This is because the adjacency matrices of LJ and FS datasets are
more sparse compared to other datasets, so the efective computation accounts for a smaller proportion when
implementing graph algorithms using SpMV operation. Note that we use #�����/(#��������)2 to represent the
density of a graph, and with the density decreases, the sparsity increases. For AZ, SF, BK, LJ, and FS, their values
of #�����/(#��������)2 are 1.8�−5, 2.9�−5, 1.6�−5, 2.9�−6 and 4.2�−7, respectively. Figure 24 shows the energy
saving of ASGraph normalized to CPU platform. ASGraph achieves 8064.2× and 3347.8× energy saving compared
to Ligra and HotGraph, respectively.

We run Gunrock [48] and Scaph [68] on a GPU platform with 6912 CUDA cores and normalize the performance
of ASGraph to them. As shown in Figure 23, the geometric mean of speedups of ASGraph compared to Gunrock
and Scaph are 39.6× and 52.8×, respectively. The energy saving of ASGraph normalized to GPU platform is shown
in Figure 24. It shows that ASGraph achieves 521.9× and 676.5× energy savings compared to Gunrock and Scaph,
respectively.
We compared the performance of ASGraph with two cutting-edge processing-inmemory (PIM) based graph

processing accelerators, i.e., GraphP [57] and GraphQ [72], which use the same conigurations in [72]. Figure 23
and Figure 24 show that ASGraph outperforms GraphP and GraphQ by 2.7×∼19.5×, 1.9×∼14.1× and achieves
2.1×∼37.1×, 2.3×∼28.5× energy savings, respectively.
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4.6 Comparison to Diferent Asynchronous Graph Processing Solutions

To evaluate the impact of the asynchronous graph processing solutions, we have implemented the approaches
of HotGraph [59] and Scaph [68] on the ReRAM architectures to obtain ReRAM-based accelerators HotGraph-
ReRAM and Scaph-ReRAM, respectively. Speciically, HotGraph-ReRAM extracts a backbone structure from
the original graph and then prioritizes the partitions of this backbone structure for processing over the ReRAM
crossbar. In Scaph-ReRAM, the partitions are categorized into either high-value or low-value partitions. After
that, the high-value partitions are fully loaded and iterated over repeatedly on the ReRAM crossbar, while only
the active graph data in the low-value partitions is loaded and handled over the ReRAM crossbar. Note that the
ReRAM crossbar size and the number of ReRAM crossbars in HotGraph-ReRAM and Scaph-ReRAM are the same
as those in ASGraph. Figure 25 evaluates the performance of ASGraph in comparison with HotGraph-ReRAM
and Scaph-ReRAM. This results show that ASGraph outperforms HotGraph-ReRAM and Scaph-ReRAM by
2.1×∼14.9× and 3.2×∼19.1×, respectively.

5 Related Work

Many software systems [15, 20, 22, 39, 54, 65, 67, 71] are developed based on CPU or GPU platforms to achieve
eicient graph processing. Ligra [43] is a lightweight graph processing system toward the shared-memory
architecture. GraphX [16] is a distributed graph processing system that takes advantage of distributed datalow
system to realize the low-cost fault tolerance in graph processing. Some GPU-based graph processing systems [48,
51, 60] utilize the massive CUDA cores and high memory bandwidth in GPU to achieve eicient processing.
However, the efectiveness of these software solutions over the conventional architecture faces restrictions due to
the intrinsic random access and the large amount of data movement of graph processing applications. To overcome
these limitations, some ASIC-based accelerators [7, 17, 28, 35ś37, 50, 55, 64, 66] are further proposed to accelerate
graph processing using speciic memory organizations and custom execution pipelines. Graphicionado [17] is the
irst domain-speciic graph accelerator that can reduce random memory accesses. Graphpulse [36] uses an event-
driven execution model to reduce synchronization overhead and optimize memory access patterns. Nevertheless,
these studies still sufer from substantial data movements when serving graph processing applications.

By integrating computing logic into memory, processing-in-memory (PIM) techniques can tackle the łmemory
wallž challenge to enable high-performance graph processing. Tesseract [3] is the irst PIM-based graph accelerator,
which instantiates the custom computing units near the DRAM arrays to eiciently perform parallel graph
operations through utilizing their large internal bandwidth. GraphP [57] adopts a hierarchical communication
approach to achieve lower communication and energy consumption. GraphQ [72] proposes a hybrid execution
model that essentially eliminates irregular data movement. However, these solutions still sufer from the redundant
computation overhead caused by irregular state propagations. GraphR [44] proposes the irst ReRAM-based graph
processing accelerator by mapping the SpMV-based graph operations to crossbars. To solve the sparsity problem
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in ReRAM-based solutions, several graph reordering methods are further proposed. GraphSAR [11], Lo [26], and
SGIRR [47] employ the speciic graph clustering methods to aggregate non-zero elements in the adjacency matrix
to few crossbar arrays, alleviating the processing of more crossbar-sized sub-matrices with full-zero elements. To
address both crossbar sparsity and activation sparsity, Spara [69] not only reorders the source and destination
vertices of a graph, but also removes the processing of many inactive edges via an in-situ merging approach.
However, the efectiveness of the above reordering methods is constrained by the original ordering of matrix
rows. To overcome this limitation, ReSpar [18] proposes a matrix reordering method to aggregate matrix rows
with similar non-zero column elements together into clusters and concentrate non-zero column elements to
create more full-zero crossbar arrays. For better performance, GaaS-X [5] performs calculations directly using
the sparse data representation, reducing the sparse to dense conversion overhead and redundant computation
overhead on invalid edges. Nevertheless, they still sufer from signiicant redundant computation overhead due
to the irregular processing of subgraphs. In comparison, ASGraph dynamically constructs the subgraphs based
on dependencies between vertices, regularizes the state propagations, and applies a hybrid processing scheme to
reduce computation overhead and achieve better performance.

Many graph learning accelerators [9, 24, 41, 52] have been proposed that leverage PIM techniques. gPIM [19]
oloads memory-bound aggregation and combination to the PIM enabled architecture while preserving GPU to
perform compute-intensive combination. GCN [32] proposes multiple engines incorporating a node-stationary
datalow to reduce the of-chip memory accesses and increase the reuse of node feature data in GCN inference.
TARe [53] is proposed to eiciently support both weight-static and data-static execution modes for graph learning
via a task-adaptive in-situ computing method, achieving higher processing throughput and less data movement in
total. Although these solutions can eiciently map the SpMV operations over the ReRAM crossbar, they also sufer
from signiicant redundant computation overhead to the same graph data due to the irregular state propagations.
To enhance graph processing performance, some asynchronous graph processing techniques [61, 63] have

been proposed. HotGraph [59] extracts a backbone structure from the original graph to reduce cross-partition
state propagation during asynchronous graph processing. Scaph [68] designs heterogeneous graph engines
to diferentially schedule and process partitions. However, when these solutions are applied to ReRAM-based
architectures, they still sufer from redundant computations due to the irregular state propagation among the
matrix-formatted subgraphs. Compared with them, ASGraph can eiciently regularize the state propagations
among the subgraphs and also achieve fast state propagations of the constructed tightly connected subgraph,
signiicantly reducing the redundant computation of ReRAM-based graph processing.

6 Conclusion

This paper proposes a dependency-aware ReRAM-based accelerator ASGraph for eicient asynchronous graph
processing. ASGraph constructs the subgraph based on dependencies between vertices’ states, regularizes the
state propagations according to the values of subgraphs, and applies a hybrid processing scheme to minimize the
redundant computation overhead. In this way, ASGraph can greatly reduce the amount of computation on the
crossbars, speeding up the convergence of graph algorithms and achieving better performance. The experimental
result shows that ASGraph achieves 25.5× and 4.8× speedup and 70.8× and 2.2× energy saving compared with
the state-of-the art ReRAM-based graph processing accelerators GraphR [44] and GaaS-X [5], respectively.
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